Человеческие органы на 3d принтере. Создан первый серийный биопринтер

Совсем недавно в британском журнале The Economist была опубликована захватывающая статья про биопринтер, который будет использоваться для печати человеческих органов!

Хирурги, которые занимаются пересадкой человеческих органов, надеются, что однажды они смогут по первому запросу получить все необходимые для пересадки органы. Сейчас пациент может провести несколько месяцев, а возможно и лет, в ожидании органа от подходящего пациента. На протяжении этого времени его состояние может ухудшиться. Он может даже умереть. Благодаря искусственным органам, можно было бы не только облегчить страдания пациентов, но и сохранить человеческие жизни. Теперь, с появлением первого коммерческого 3D биопринтера, эта возможность может стать реальностью.

Создание биопринтера

Принтер стоимостью 200.000$ был разработан в результате сотрудничества двух компаний: Organovo, которая находится в Сан Диего и специализируется на регенеративной медицине, и машиностроительной Invetech, расположенной в Мельбурне. Один из основателей Organovo, Габор Форжак, разработал прототип, на котором основан новый 3D принтер. Первые рабочие образцы принтера скоро будут доставлены исследовательским группам, которые, как и доктор Форжак, изучают способы создания искусственных тканей и органов. В настоящее время большая часть этой работы выполняется вручную, при помощи существующих устройств.

По словам Кейта Мерфи, директора Organovo, вначале будут создаваться только простые ткани, такие как кожа, мышцы и небольшие участки кровеносных сосудов. Однако, сразу после окончания испытания тестовых образцов, начнется производство кровеносных сосудов для операций, когда необходимо «прокладывать» новые сосуды для движения крови чтобы обойти поврежденные. После дальнейших исследований, можно будет производить более сложные органы. Поскольку машины способны печатать сети разветвленных сосудов, можно было бы, например, создавать сети кровеносных сосудов, необходимых для снабжения кровью таких искусственно произведенных органов как печень, почки, сердце.

История развития биопечати

3D биопринтер, произведенный компанией Organovo, использует тот же принцип действия что и «обычные» 3D принтеры. 3D принтеры работают аналогично с обычными струйными принтерами, но печатают модель в трехмерном виде. Такие принтеры распыляют капельки полимера, которые сплавляются вместе, после чего образуют единую структуру. Таким образом, за каждый проход печатающая головка создает маленькую полимерную линию на объекте. В результате, шаг за шагом, предмет обретает свою окончательную форму. Полости в сложном объекте поддерживаются при помощи «подмостков» из специальных растворимых в воде материалов. Эти подмостки вымываются после того как объект будет полностью закончен.

Исследователи обнаружили, что аналогичный подход можно применить и к биологическим материалам! Если расположить крошечные участки клеток рядом друг с другом, они начинают как бы «сплавляться» вместе. В настоящее время исследуется ряд технологий, который бы позволил создавать человеческие органы из отдельных клеток, например, технология «накачивания» мышечных клеток при использовании маленьких машин.

Несмотря на то, что индустрия печати человеческих органов только зарождается, ученые уже могут похвастать успешными примерами создания человеческих органов «с нуля». Так, в 2006 году Энтони Атала, вместе со своими коллегами из Wake Forest Institute for Regenerative Medicine в Северной Каролине, США, создали для семерых пациентов мочевые пузыри. Все они до сих пор функционируют.

Процесс создания мочевого пузыря происходил следующим образом. Вначале доктор брал крошечный образец ткани мочевого пузыря пациента (чтобы предотвратить отторжение новосозданного органа иммунной системой). Затем полученные клетки наносились на биологический мочевой пузырь, который представлял собой поддерживающую основу, имеющую форму мочевого пузыря нагретую до температуры человеческого тела. Нанесенные клетки начинали расти и делиться. После 6-8 недель мочевой пузырь был готов для имплантации пациенту.

Преимущество использования биопринтера состоит в том, что для его работы не нужна поддерживающая основа («подмостки»). Машина Organovo использует стволовые клетки, полученные из костного мозга. Из стволовых клеток можно получить любые другие клетки, используя различные факторы роста. 10-30 тысяч таких клеток формируются в маленькие капельки диаметром 100-500 микрон. Такие капельки хорошо сохраняют свою форму и прекрасно подходят для печати.

Итак, первая печатающая головка фактически выкладывает капельки с клетками в нужном порядке. Вторая головка используется для распыления поддерживающего основания - гидрогеля на сахарной основе, который не взаимодействует и не прилипает к клеткам. Как только печать закончена, полученную структуру оставляют на один-два дня для того чтобы капли «сплавились» друг с другом. Для создания трубчатых структур, таких как кровяные сосуды, вначале наносится гидрогель (внутри и снаружи будущей структуры). После этого добавляются клетки. Как только сформируется орган, гидрогель снимается с наружной части (как кожура апельсина) и вытягивается из внутренней части, как кусочек веревки.

В биопринтерах можно использовать и другие виды клеток и поддерживающих оснований. Так, по словам господина Мерфи, клетки печени можно наносить на заранее сформированное основание, имеющее форму печени или можно формировать слои из соединительной ткани для создания зуба. При этом новый принтер обладает такими скромными габаритами, что его можно спокойно поставить в биологический шкаф для обеспечения стерильной среды в процессе печати.

Некоторые исследователи полагают, что такие машины как эта, когда-нибудь смогут печатать ткани и органы прямо в человеческом теле! И, на самом деле, доктор Атала сейчас работает над принтером, который, после сканирования участка тела, где необходима пересадка кожи, сможет напечатать кожу прямо на человеческом теле! Относительно органов большего размера, доктор Форжак считает, что они могут принимать различные формы, по крайней мере, вначале. Например, для того чтобы очищать кровь, искусственная почка не обязательно должна выглядеть как реальная почка или функционально полностью повторять ее. Те люди, которые ждут органов, наверняка не будут сильно переживать из-за того, как будут выглядеть новые органы. Главное - чтобы они работали, а люди чувствовали себя лучше.

После 10 лет разработок команда биолога Энтони Аталы представила публике Cистему печати встроенной ткани и органов. После окончания всех анализов эти 3D-бионапечатанные структуры будут использоваться для замены поврежденной, больной или мертвой ткани пациентов. А так как они спроектированы на компьютере, то эти заменители будут в точности соответствовать нуждам каждого отдельного пациента. Детали технологии освещены в статье, напечатанной в журнале Nature Biotechnology.

Биопринтеры работают также как обычные 3D-принтеры, но вместо пластика или металлов используют специальные биоматериалы, которые по характеристикам напоминают функционирующую живую ткань. Но до сих пор пор биопринтеры не могли печатать ткани нужных размеров или прочности. Материалы получались слишком слабые и структурно нестабильные для хирургической трансплантации. Также они не могли печатать кровеносные сосуды, а без них новые клетки не могли получать кислород и питательные вещества.

Новый биопринтер преодолел все эти недостатки. Биоразрушаемый полимерный материал используется для создания формы ткани, а гель на основе воды доставляет клетки в структуру (гель не токсичен по отношению к клеткам) Временная внешняя структура помогает поддерживать форму объекта во время процесса печати. А чтобы справиться с ограничениями по размеру, исследователи внедрили в объект специальные микроканалы, которые позволяют доставлять питательные вещества и кислород ко всем клеткам внутри структуры. «По сути мы воссоздали капилляры с помощью этих микроканалов», — %D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82%20%20%D0%90%D1%82%D0%B0%D0%BB%D0%B0.

%0A

%D0%94%D0%BB%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B8%20%D1%81%D0%B2%D0%B5%D0%B6%D0%B5%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D1%85%20%D0%B1%D0%B8%D0%BE%D1%87%D0%B0%D1%81%D1%82%D0%B5%D0%B9%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D0%BB%D0%B8%20%D1%80%D1%8F%D0%B4%20%D1%8D%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BD%D0%B0%20%D0%B6%D0%B8%D0%B2%D1%8B%D1%85%20%D0%B6%D0%B8%D0%B2%D0%BE%D1%82%D0%BD%D1%8B%D1%85.%20%D0%92%D0%BD%D0%B5%D1%88%D0%BD%D0%B8%D0%B5%20%D1%83%D1%88%D0%B8,%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BE%D0%BC%20%D1%81%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,%20%D0%B1%D1%8B%D0%BB%D0%B8%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D1%8B%20%D0%BF%D0%BE%D0%B4%20%D0%BA%D0%BE%D0%B6%D1%83%20%D0%BC%D1%8B%D1%88%D0%B8.%20%D0%A7%D0%B5%D1%80%D0%B5%D0%B7%20%D0%B4%D0%B2%D0%B0%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B0%20%D1%83%D1%88%D0%B8%20%D0%BF%D0%BE%E2%80%91%D0%BF%D1%80%D0%B5%D0%B6%D0%BD%D0%B5%D0%BC%D1%83%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%84%D0%BE%D1%80%D0%BC%D1%83,%20%D0%B0%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%D1%81%D1%8C%20%D0%BA%D1%80%D0%BE%D0%B2%D0%B5%D0%BD%D0%BE%D1%81%D0%BD%D1%8B%D0%B5%20%D1%81%D0%BE%D1%81%D1%83%D0%B4%D1%8B%20%D0%B8%20%D1%85%D1%80%D1%8F%D1%89%D0%B5%D0%B2%D0%B0%D1%8F%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.%20%D0%9D%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BC%D1%83%D1%81%D0%BA%D1%83%D0%BB%D1%8B%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81,%20%D0%B8,%20%D0%BA%D0%B0%D0%BA%20%D0%B8%20%D0%B2%20%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B5%20%D1%81%20%D1%83%D1%88%D0%B0%D0%BC%D0%B8,%20%D1%8D%D1%82%D0%B8%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%81%D0%B2%D0%BE%D1%8E%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%83.

%0A

%D0%A1%D1%82%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5%20%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B4%D0%BB%D1%8F%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D1%8F%20%D1%84%D1%80%D0%B0%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BA%D0%BE%D1%81%D1%82%D0%B5%D0%B9%20%D1%87%D0%B5%D0%BB%D1%8E%D1%81%D1%82%D0%B8,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B5%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81.%20%D0%A1%D0%BF%D1%83%D1%81%D1%82%D1%8F%20%D0%BF%D1%8F%D1%82%D1%8C%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B5%D0%B2%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%8B%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BB%D0%B8%20%D0%BA%D1%80%D0%BE%D0%B2%D0%BE%D1%81%D0%BD%D0%B0%D0%B1%D0%B6%D0%B0%D0%B5%D0%BC%D1%83%D1%8E%20%D0%BA%D0%BE%D1%81%D1%82%D0%BD%D1%83%D1%8E%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.

%0A

%D0%90%D1%82%D0%B0%D0%BB%D0%B0%20%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82,%20%D1%87%D1%82%D0%BE%20%D1%82%D0%B0%D0%BA%D0%B8%D0%B5%20%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B8%D0%BC%D0%B5%D1%8E%D1%82%20%D0%BD%D1%83%D0%B6%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80,%20%D0%BF%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B8%20%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B4%D0%BB%D1%8F%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%D1%85%20%D0%B2%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%BC%20%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%D0%B5,%20%D0%BF%D1%80%D0%B8%D1%87%D0%B5%D0%BC%20%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D0%BC%D0%BE%D0%B6%D0%B5%D1%82%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B1%D1%83%D0%BA%D0%B2%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%20%D0%BB%D1%8E%D0%B1%D1%8B%D1%85%20%D1%84%D0%BE%D1%80%D0%BC.%20%D0%A1%D0%B5%D0%B9%D1%87%D0%B0%D1%81%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%B7%D0%B0%D0%BD%D0%B8%D0%BC%D0%B0%D1%8E%D1%82%D1%81%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%BE%D0%B9%20%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D1%81%D1%82%D0%B8%20%D1%81%D0%B2%D0%BE%D0%B5%D0%B3%D0%BE%20%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B5%D1%82%D0%B5%D0%BD%D0%B8%D1%8F,%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D1%87%D0%B5%D0%B3%D0%BE%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D0%B1%D1%83%D0%B4%D0%B5%D1%82%20%D0%BF%D0%B5%D1%80%D0%B5%D1%85%D0%BE%D0%B4%D0%B8%D1%82%D1%8C%20%D0%BA%20%D0%B8%D1%81%D0%BF%D1%8B%D1%82%D0%B0%D0%BD%D0%B8%D1%8F%D0%BC%20%D0%BD%D0%B0%20%D0%BB%D1%8E%D0%B4%D1%8F%D1%85.">

«Распечатают ли нам, наконец, новые органы?» - этот странный вопрос в наши дни, оказывается, уже витает в воздухе. Так вот, сообщаем: распечатают. Но не сейчас. Не так скоро. Хотя в России уже разрабатываются и биопринтеры, на которых в будущем станут печатать «запчасти» для человека, и биобумага для таких устройств.

Одна из таких отечественных «точек роста» - лаборатория тканевой инженерии Института теоретической и экспериментальной биофизики (ИТЭБ РАН), расположенного в подмосковном наукограде Пущино.

«Кусочки сахара» и челюсть из них

Что же значит термин «тканевая инженерия» и откуда он взялся?

Прежде чем делать с нуля новые почки и сердце (чего мы пока не умеем), медицине предстояло освоить две задачи попроще. Во-первых, научиться воспроизводить твердые ткани – кости. И во-вторых, научиться воссоздавать большие куски тканей для «залатывания» тяжелых травм.

С этим к настоящему моменту дело обстоит довольно неплохо. В обоих случаях применяются «биодеградируемые материалы». Они не остаются в организме навсегда, а составляют основу, заселяя которую, стволовые клетки человека постепенно восстанавливают ткань. При этом сама «заплатка» попросту рассасывается.

Первым делом корреспондентам «МИР 24» показали нечто, похожее на «кусочки сахара» в колбах. Как оказалось, это – запасы материалов или препаратов, из которых формируется заменитель кости у человека. «Белые вещества» могут быть как из натуральной кости, так и из синтетических полимеров, таких как полилактиды и полигликолиды.

Напечатанная под управлением компьютера на 3D–принтере костная ткань по своей структуре может как полностью воссоздавать утраченный фрагмент кости, так и создавать другие конструкции, подходящие для обеспечения процесса ее восстановления.

«Возможности 3D-биопринтинга позволили, например, заместить удаленную из-за раковой опухоли нижнюю челюсть человека, - рассказывает руководитель лаборатории роста клеток и тканей Ирина Селезнева. – Прежде чем ее удалить, сняли томограмму и по компьютерной модели восстановили и напечатали каркас органа, который потом заселили собственными стволовыми клетками пациента и заместили утрату».

С воспроизводством мягких тканей дело обстоит сложнее. Однако за последние десять лет ученые существенно продвинулись и в этом направлении.

Из чего делается «биобумага»

Суть метода «биопечати» в данном случае в том, что будущий орган формируется из двух основных компонентов: живых клеток и «матрикса», моделирующего условия межклеточной среды и соединительной ткани.

Источником клеток могут стать как донорские, так и собственные стволовые клетки человека, выделенные, например, из жира или костного мозга. Они могут быть превращены в различные типы клеток и тканей под воздействием биологически активных веществ.

Руководитель лаборатории тканевой инженерии профессор Владимир Акатов и Ирина Селезнева говорят о создании новых биоактивных материалов, способных активировать собственные регенераторные возможности организма без привнесенных извне клеток. Главное - создать условия для миграции и роста собственных стволовых клеток человека и формирования ими тканей.

«Биобумагой для биопринтера» ученые называют искусственную среду, в которой смогут расти живые клетки будущих органов. Она образуется из белков, полисахаридов и других биоактивных веществ и представляет собой гидрогель, который можно заправлять в биопринтер вместе с клетками, либо тонкую пленку, на которой можно печатать клетки.

«Мы исследуем эти гели при взаимодействии с клетками, - поясняет старший научный сотрудник Галина Давыдова. - Смотрим, как составить композицию, чтобы после полимеризации гидрогель обеспечивал механические характеристики конструкции и условия для жизни в них леток».

Галина Анатольевна набирает в один шприц белок коллаген, а в другую – полисахарид (метилцеллюлозу). И капает из обоих шприцов в чашечку Петри. Происходит реакция, в результате которой в чашечке образуется бесформенная «пенка» или пленка. Бумагу она напоминает весьма относительно – впрочем, что-то вроде кусочка рельефных обоев или линкруста. Это гель «полимеризуется».

Вот прототип той «подложки», куда станут слой за слоем наращивать клетки будущих органов. Она сможет образовывать трехмерные объемные структуры этих органов, а затем, сыграв свою роль, рассосется в организме. Пока ничего сногсшибательного с виду не напоминает.

Бумага нужна всем печатникам

Однако у пущинцев довольно солидные партнеры. «В нашей стране есть два лидера биопринтинга, несколько различающихся по своим подходам и аппаратному обеспечению, - рассказала Ирина Ивановна Селезнева. – Один из них – Владимир Миронов, глава 3D Bioprinting Solutions и профессор в Университете штата Вирджиния».

Технология Миронова похожа на «струйный принтер», когда под управлением компьютера струи из разных шприцов смешиваются, формируя на подложке ткань. «В качестве чернил используются клеточные сфероиды, агрегаты клеток, которые обладают способностью сливаться между собой, образуя те же капилляры и другие структуры, ткани», - отметила Селезнева.

Другой лидер - Борис Чичков, профессор Ганноверского университета им. Лейбница и заведующий лабораторией лазерной наноинженерии в Институте проблем лазерных и информационных технологий РАН в Троицке.

«Условно назовем это лазерный биопринтинг – рассказала Селезнева. - Очень короткие, фемтосекундные импульсы лазера позволяют сшивать материал шаг за шагом, задавая под управлением компьютера нужную форму матрикса с точностью до нанометров. Эти же лазерные импульсы способны переносить с одной поверхности на другую даже отдельные клетки, которые при этом сохраняют свою жизнеспособность ».

Технологии биопечати различаются, но без матрикса, обеспечивающего адекватное микроокружение для жизни клеток и формирования тканей в обоих случаях не обойтись. В Пущино разрабатывают «бумагу», как для струйного, так и для лазерного принтера, адаптируя характеристики гидрогелей к особенностям технологии биопечати.

В принципе, пользуясь методами биопринтинга в отдаленном будущем, возможно, удастся собирать орган, как пазл, из отдельных клеток и матрикса. А в ближайшем будущем напечатанные таким образом кусочки тканей станут новой моделью для тестирования новых лекарств.

Сверхзадача, которую ставят ученые на будущее – научиться наращивать ткани прямо на поврежденном месте. Тогда вместо громоздкого принтера будет использоваться инструмент вроде пистолета, из которого на тело пациента станут наносить элементы гидрогеля с клетками, которые прямо на человеке будут полимеризоваться, формируя новую ткань.

На 3D-принтерах с 2012 года возможно распечатать протезы и импланты опорно-двигательного аппарата человека. Позвонки и межпозвоночные диски из пластика и резины уже сейчас довольно хорошо освоены и постепенно осваивается более сложный уровень — печать человеческих органов и частей тела на клеточном уровне. В клиниках США, Европы и Японии, которые впереди планеты всей по научным исследованиям в медицине, прямо сейчас экспериментируют со стволовыми клетками, дабы создавать такие части тела, которые бы стопроцентно вживлялись в человеческое тело.

Чтобы вы лучше представили себе размах прогресса, можно привести данные Oxford Performance Materials, которые говорят о 450 тысячах пациентов по всему миру и инвестициях на 2 млрд. долл. Вызывает сомнение использование стволовых клеток и собственных клеток человека, однако именно такой материал полностью исключит риск отторжения. Стволовые клетки не единственный ресурс для 3D-принтера, ученые уже работают над комбинацией пластиковых волокон и живых клеток, без которой немыслимо создание по-настоящему сложных органов. Согласитесь, одно дело распечатать протез кости, а другое — части печени или сердца.

Пока полностью такие сложные органы сделать не могут, а вот, к примеру, напечатанную кожу уже вовсю используют для пересадки в ожоговом центре США. Меценаты и просто бизнесмены по всему миру вкладываются в медицинскую 3D — печать, по данным исследования Grand View Research, к 2020 году объем рынка 3D-печати будет больше миллиарда долларов, сами принтеры будут стремительно дешеветь, а там рукой подать до выпуска массовых, домашних моделей.

Какие же успехи медицина может предоставить нам на текущий момент?

Череп

В марте прошлого года хирурги заменили 75% черепа человека на пластиковый протез. Отдельные кости, вроде челюстных, «вмонтировались» в голову человека и раньше, однако таких масштабов замены еще никто не производил, тем более одноэтапно и с помощью 3D — принтера.

Позвоночник

Как уже написано выше, замена позвонков и межпозвоночных дисков дело почти освоенное, однако совсем недавно китайцы осуществили новый прорыв и сделали заменили 12-летнему мальчику позвонок с опухолью спинного мозга. Материал сделали пористым, поэтому постоянно менять позвонок не придется — он просто обрастет новой костной тканью и станет неотъемлемой частью тела.

Ухо

Бионическое ухо было создано из клеток теленка, полимерного геля и наночастиц серебра. В результате медики Принстонского университета создали настоящее «ухо будущего», которое способно воспринимать радиоволны, не улавливаемые обычным человеческим ухом. По словам ученых, они вполне могут освоить «подключение» такого уха к нейронам головного мозга, чтобы он мог воспринимать услышанное.

Зародыш

Не совсем живой орган, однако, японская компания «Fasotec» при помощи магнитно-резонансного томографа печатают в прозрачном кубе, имитирующем утробу матери, точную копию вашего будущего ребенка. Выглядит одновременно и фантастично и пугающе, но пока этот насквозь коммерческий проект нравится медикам, ведь с его помощью можно будет наблюдать за правильным развитием плода, практически держа модель ребенка в руках.

Руки

Когда уроженцу Южной Африки Ричарду Ван Есу отрубило пальцы правой руки в столярной мастерской, он нашел Айвана Оуэна из Вашингтона, который создал прототипы механических рук. Вместе они основали компанию Good Enough Tech, разработали Robohands, и освоили печать «роборук» на 3D-принтере, существенно удешевив конечную стоимость продукта. Заручившись поддержкой компании Makerbot которая одолжила им и принтеры и ресурсы для печати, эти два энтузиаста помогли уже более чем 200 людям по всему миру.

Печень

Полный орган напечатать пока не удается, ввиду его сложности, однако уже в сейчас освоена печать ткани печени из гепатоцитов, звездчатых клеток и клеток эпителия. Успех этот датирован 2013 годом, так что вполне возможен научный прорыв до «распечатки» целой печени уже в ближайшее время.

Нос

Корейские врачи и исследователи успешно восстановили искусственный нос, сделанный на 3D принтере шестилетнему мальчику. Нерха, мальчик из Монголии, родился без носа и ноздрей, что крайне редко встречается. Младенцы, родившиеся без носа, могут дышать должным образом, и большинство из них умирает в течение 12 месяцев. Врачи из Сеула, куда родители привезли мальчика, создали структуру поддержки для дыхательных путей, используя технологию 3д печати. В серии операций врачи восстановили нос Нерхи. Ноздри пациента были созданы с помощью его же костной ткани. Теперь он может нормально дышать и выглядит гораздо лучше.

«Печать» человеческих органов на 3D-принтере

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Когда-то это было научной фантастикой, а уже сегодня это научный факт - 3D печать человеческих органов применяется в медицине.

На первый взгляд сама идея производства органов «на заказ» с помощью 3д печати кажется сюжетом для фантастического фильма. Тем не менее, техника, способная создавать живые человеческие ткани, замещать жизненно важные органы и быстро залечивать открытые раны - это намного более реально, чем вы можете себе представить.

3D печатные органы уже используются в качестве учебных пособий для будущих хирургов, чтобы отточить их навыки перед столкновением с реальными чрезвычайными ситуациями в жизни. Также успешно пересаживают 3D печатные замены кости, но печать живых тканей станет следующим шагом в развитии этой новаторской технологии.

Процесс

Как и в любой другой 3D печати, объект печатается слой за слоем, но в отличие от 3д технологий PLA или ABS , для создания живой ткани используются живые клетки, которые находятся в гелеобразной массе. После этого клетки растут и развиваются, превращаясь в живую ткань, кости и даже целые органы. Перспективы того, что эта технология может сделать для человечества, поистине огромны. В мире острая нехватка донорских органов, и биопечать 3D могла бы стать решением этой проблемы.

Ранние разработки

Хотя технология 3Д биопечати пока еще не готова для использования в коммерческих целях, ее применение уже сейчас приносит умопомрачительные результаты.

С помощью 3д принтера RepRap группа биоинженеров из Университета Пенсильвании создала работающие кровеносные сосуды. Биоинженеры всего мира уверенно движутся к тому, что напечатать органы можно будет из клеток пациента, но на этом тернистом и сложном пути все еще достаточно трудностей и проблем, которые только предстоит преодолеть. Ключевая проблема, которая стоит перед биоинженерами - создание системы кровеносных сосудов, которая могла бы обеспечивать обмен питательными вещества и удалять отходы из внутренних клеток ткани. Поскольку возможности создать такие кровеносные сосуды нет, внутренние клетки быстро задохнутся и умрут. Но команда из Пенсильвании предложила удивительное решение проблемы.

Биоинженеры из Университета Пенсильвании попытались решить эту проблему, использовав 3D -принтер под названием RepRap для печати сети кровеносных сосудов из сахара. После того как в группу клеток внедрена специальная сеть кровеносных сосудов, сахар просто растворяется, при этом работающая сосудистая сеть остается.

Ученый-биоинженер Джордан Миллер говорит, что идея пришла ему в голову во время посещения выставки. "Впервые такая мысль посетила меня, когда я был на выставке Body Worlds (Мир тела), где можно увидеть отдельные пластиковые формы и слепки органов сердечно-сосудистой системы".

Когда сахар затвердевает, в пресс-форму добавляется гелеобразная масса с клетками печени. Этот гель покрывает и обволакивает кровеносные сосуды. Как только гель затвердевает, его можно извлечь из формы. Форма из сахара остается внутри до тех пор, пока гель не смывается водой, сахар при этом растворяется полностью. Жидкий сахар вытекает по тем же кровеносным сосудам, которые были созданы с его помощью, при этом какой-либо вред клеткам не наносится.

"С точки зрения работы с клетками эта новая технология делает образование тканей простым и легким делом", - говорит Кристофер Чен, профессор по инновациям на Факультете биоинженерии.

Прорыв

Хирург Энтони Атала - директор института регенеративной медицины Wake Forest , он и его команда сделали значительный шаг вперед в 3Д печати органов. Используя живые клетки, Атала работает над 3D -печатью почек для трансплантации. И хотя все еще находится на ранней стадии, команда Атала уже достигла значительного прогресса на пути к решению одной из самых больших проблем, стоящих перед трансплантацией - нехваткой донорских почек во всем мире.

Более 10 лет назад Атала успешно трансплантировал искусственный мочевой пузырь своему пациенту Люку Масселла, поэтому ему, как мало кому другому известно, как эта технология может изменить жизнь.

Энтони Атала задается вопросом: "Можем ли мы выращивать органы, вместо того, чтобы заниматься их трансплантацией?». Его лаборатория в институте регенеративной медицины Wake Forest именно этим и занимается - создает более 30 тканей и целых органов.

Практическое применение

Помимо трансплантации органов, 3D печать может быть использована в различных сферах медицины. Это поможет не только производить донорские органы, но также обеспечить лучшее заживление и выздоровление пациентов, и лучшее медицинское образование для уже работающих специалистов и студентов. Некоторые практические примеры того, где можно применять такие технологии:

1. Органы

Наиболее очевидное использование 3D печатных органов: пересадка. Невозможно переоценить способность создавать новые органы непосредственно из собственных клеток пациента. Это может спасти десятки тысяч жизней каждый год.

2. Поддержка скелета

Изготовление сложных и подробных объектов - одна из сильных сторон 3D печати, поэтому 3D -принтеры уже используются для создания биоразлагаемых структур для поддержки скелета, чтобы помогает и облегчает исцеление больного и рост тканей.

3. Замена костей

В сочетании с 3D - сканированием, 3D -принтеры могут создавать кость, например, бедренную, что идеально подходит для тех, кто нуждается в новой костной ткани. Создание замены костей специально подобранных для каждого пациента в значительной мере снижает дискомфорт для пациента и улучшает подвижность после пересадки.

4. Практика операций

Всякий раз, когда вы посещаете врача, вы хотите знать, что в ы в опытных руках. Никто не хочет быть стать первым, кого оперирует этот врач. С 3D печатными органами будущие хирурги могли бы выполнять десятки или даже сотни операций до того, как сделают эту же операцию реальному человеку. Возможность хирургов получить лучшую практику означает, что на проведение операции в результате понадобиться меньше времени, а выздоровление пройдет быстрее.

5 . Тестирование медицинских препаратов

Никому не нравится идея тестирования лекарств, будь то на животных или на людях. Но опять же, все мы хотим знать, что наши лекарства проверены и безопасны. С распространением 3D биопечати на напечатанных органах и тканях можно было бы проверить наличие побочных эффектов или негативных реакций на данный препарат в развитии. Если вы видите на бутылке или пакете с лекарством описание побочного действия от препарата, то это значит, что кто-то уже перенес это побочное действие при тестировании и изучении препарата. С 3D печатью мы навсегда забудем о тестировании медикаментов на людях и животных. Это также будет способствовать непрерывному развитию медицины.

Ведущие исследователи

Один из основных разработчиков 3д печати органов - компания Organovo из Сан-Диего. Их сайт гласит:

"В Organovo мы проектируем и создаем полностью функциональные человеческие ткани, используя наши собственные трехмерные технологии биопечати. Наша цель заключается в создании живых человеческих тканей, которые будут функционировать как природные ткани человека. С 3D тканями, которые точно соответствуют биологии человека, мы делаем возможным использование инновационных методов лечения:

В сотрудничестве с биофармацевтическими компаниями и научными медицинскими центрами мы проектируем, создаем и тестируем искусственно созданные ткани для моделирования заболевания и изучения токсикологии.

Мы даем исследователям то, чего раньше у них никогда не было: это возможность тестировать лекарства на функциональных человеческих тканях еще до введения препарата живому человеку; это поможет преодолеть существующую пропасть между доклиническими и клинических испытаниями.

Мы создаем функциональные, трехмерные ткани, которые могут быть имплантированы в организм человека для лечения или замены поврежденных или больных тканей".

Недавно компания была зарегистрирована на Нью- Йоркской фондовой бирже. Organovo уже доказала коммерческую ценность этой очень новой области деятельнсти, которая, несомненно, в будущем будет расти и развиваться.

Хотя персональные 3D-принтер не отстают и по мнению экспертов могут кардинально повлиять на область медицины.

Похожие статьи

© 2024 cryptodvizh.ru. Сryptodvizh - Бизнес новости.