Какой металл самый легкий? Его свойства и особенности. Почему железные корабли не тонут? Металлы не тонущие в воде

Помогал проводить Денис Зеленов. 10 лет.

Летом Денис купался на Волго — Донском канале. Смотрел на большие корабли, как они идут по каналу, поднимаются и опускаются в камере шлюза. И задумался: что позволяет им не только держаться на воде, но и перевозить тяжелые грузы?

Почему корабли могут ходить по воде?

Причин несколько.

1. Плотность

Опыт 1

Все мы знаем, что если бросить в воду деревянную доску, то она будет лежать на ее поверхности, а вот металлический лист такого же размера сразу начинает тонуть.

Почему так происходит? Это определяется не весом предмета, а его плотностью . Плотность – это масса вещества, заключенная в определенном объеме.

Опыт 2

Мы взяли кубики одинакового размера 70×40х50 мм из разного материала — металл, дерево, камень и пенопласт и взвесили их. И увидели, что кубики имеют разный вес, а следовательно, и разную плотность.

Вес кубика из:

  • камня –264гр.,
  • пенопласта — 3 гр.,
  • металла — 1020 гр.,
  • дерева – 70 гр.

Отсюда сделали вывод, что из кубиков самый плотный материал – это металл, затем камень, дерево и пенопласт.

Опыт 3

А что произойдет, если эти кубики опустить в воду? Как видно из опыта камень и металл утонули – их плотность больше плотности воды, а пенопласт и дерево нет – их плотность меньше плотности воды. Значит, любой предмет будет плавать, если его плотность меньше плотности воды.

Следовательно, корабль, чтоб он держался на воде, надо сделать так, чтобы его плотность была меньше плотности воды. Предположим, делать его из такого материала, который имеет плотность меньше плотности воды и не тонет – например, из дерева. Из истории мы знаем, что человек именно из дерева делал вначале плоты, а затем лодки, используя свойство дерева –плавучесть.

Сегодня мы видим много кораблей сделанных из металла, но они не тонут. Причина в том, что их корпус наполнен воздухом. Воздух намного менее плотное вещество, чем вода. У корабля образуется, как бы общая, суммарная плотность воздуха и металла. В результате этого средняя плотность корабля вместе с огромным объемом воздуха в его корпусе становится меньше плотности воды. Потому-то и не тонет тяжелый корабль. Подтвердим это опытом.

Опыт 4

Опустим в воду плоский лист металла – он сразу же тонет, а любая посудина с бортами остается на плаву — в ней образуется запас плавучести. Туда даже можно положить груз.

Так же действует спасательные средства: жилет или круг, одетый на человека. С их помощью удается удержаться на плаву до прибытия спасателей.

2. Выталкивающая сила

Кроме того на погруженное в воду тело действует выталкивающая сила. На рисунке мы видим, что на тело со всех сторон действуют силы давления:

Силы, действующие в горизонтальном направлении, т.е. на борта судна, взаимно компенсируют друг друга. Давление же на нижнюю поверхность - на днище, превышает давление сверху. Вследствие этого возникает направленная вверх выталкивающая сила.

Это хорошо видно из следующего опыта.

Опыта 5

Мячик с воздухом внутри, погруженный в воду, с силой вылетает из нее вверх.

Это действует на мяч выталкивающая сила (сила Архимеда). Она то и удерживает корабль на плаву и позволяет кораблю плавать.

1-Силы поддержания; 2-Давление воды на борт судна

Отчего же зависит действие выталкивающей силы?

Первое – это от объема корабля и второе — от плотности воды, в которой корабль плавает. Эта сила тем больше, чем больше объем погруженного тела. Проверим это опытом.

Опыт 6

Положим на плавающую доску небольшой груз –они тонут. А вот объем надувной лодки значительно больше, и она может выдержать даже несколько человек.

Второе — выталкивающая сила меняется с увеличением плотности воды. Плотность воды можно увеличить, если ее сильно-сильно посолить.

Докажем это следующим опытом.

Слово «металл» часто ассоциируется с тяжеловесностью. Это далеко не так. Все металлы обладают очень разными свойствами. Некоторые из них настолько лёгкие, что даже не тонут в воде. Какой металл самый легкий? Какие у него свойства? Давайте узнаем.

Самые легкие металлы в мире

Лёгкими называют металлы, которые обладают небольшой плотностью. Это отнюдь не редкое явление. Вещества с такими характеристиками составляют примерно 20 % от массы земной коры. Они активно добываются и широко применяются в промышленности.

Самым лёгким металлом является литий. Кроме наименьшей атомной массы, он обладает и наименьшей плотностью, которая в два раза ниже, чем у воды. После лития идут калий, натрий, алюминий, рубидий, цезий, стронций и т. д. В их число входит и титан, который обладает самой высокой прочностью среди металлов.

Легкостью и прочностью обладает также алюминий. В земной коре он третий по распространённости. Пока люди не научились получать его промышленным путём, металл был дороже золота. Сейчас килограмм алюминия можно купить примерно за 2 доллара. Его применяют как в ракетной технике и военной промышленности, так и для изготовления пищевой фольги и кухонных предметов.

Литий

Литий находится в первой группе периодической таблицы элементов. Он стоит под номером 3, после водорода и гелия, и обладает самой маленькой атомной массой среди всех металлов. Простое вещество - литий, при нормальных условиях имеет серебристо-белый цвет.

Это самый лёгкий щелочной металл с плотностью 0,534 г/см³. Из-за этого он всплывает не только в воде, но и в керосине. Для его хранения обычно используют парафин, газолин, минеральные масла или петролейный эфир. Литий очень мягкий и пластичный, легко режется ножом. Чтобы расплавить этот металл, его нужно нагреть до температуры 180,54 °C. Закипит он только при 1340 °C.

В природе существует только два стабильных изотопа металла: Литий-6 и Литий-7. Кроме них, есть 7 искусственных изотопа и 2 ядерных изомера. Литий является промежуточным продуктом в реакции превращения водорода в гелий, участвуя, таким образом, в процессе образования звёздной энергии.

Реакции с литием

Учитывая его щелочную природу, можно предположить, что он очень активен. Однако металл является самым спокойным представителем своей группы. При нормальной комнатной температуре литий слабо реагирует с кислородом и многими другими веществами. Свой «бурный нрав» он проявляет после нагревания, тогда он вступает в реакцию с кислотами, различными газами и основаниями.

В отличие от других щелочных металлов с водой он реагирует мягко, образуя гидроксид и водород. С сухим воздухом реакции практически нет. Но если он влажный, то литий медленно реагирует с его газами, образуя нитрид, карбонат и гидроксид.

При определённых температурах самый легкий металл активен с аммиаком, этиловым спиртом, галогенами, водородом, углеродом, кремнием, серой.

Сплавы лития

Свойства лития повышают отдельные качества металлов, из-за чего его часто используют в сплавах. Полезной является его реакция с окислами, водородом, сульфидами. При нагревании он образует с ними нерастворимые соединения, которые легко извлечь из расплавленных металлов, очистив их от этих веществ.

Для придания сплаву стойкости к коррозии и пластичности его смешивают с магнием и алюминием. Медь в сплаве с ним становится более плотной и менее пористой, лучше проводит электричество. Самый легкий металл повышает твёрдость и пластичность свинца. При этом он повышает температуру плавления многих веществ.

Благодаря литию металл становится прочным и устойчивым к разрушениям. При этом он не утяжеляет их. Именно поэтому сплавы на его основе применяются в космической инженерии и авиации. Главным образом используются смеси с кадмием, медью, скандием и магнием.

Нахождение в природе и значение

Самый легкий металл имеет около 30 собственных минералов, но только 5 из них используются в промышленности: пенталит, амблигонит, лепидолит, циннвальдит и сподумен. Кроме того, находится он в солёных озёрах. Всего в земной коре содержится 0,005 % этого металла.

Большие промышленные запасы лития находятся на всех континентах. Его добывают в Бразилии, Австралии, ЮАР, Канаде, США и других странах. После чего применяют его в электронике, металлургии, лазерных материалах, ядерной энергетике и даже медицине.

В нашем организме он содержится в печени, крови, лёгких, костях и других органов. Недостаток лития приводит к нарушениям в работе нервной системы и мозга. Он повышает устойчивость организма к болезням, активизирует деятельность ферментов. С помощью него борются с болезнью Альцгеймера, психическими расстройствами, склерозом, а также различными зависимостями.

Токсичность

Несмотря на важную биологическую роль лития в нашем организме, он может быть опасным. Самый легкий металл достаточно токсичен и способен вызывать отравления. При горении он провоцирует раздражение и отёки слизистых оболочек. Если на них попадет кусочек целого металла, произойдёт то же самое.

Литий нельзя брать в руки без перчаток. Взаимодействуя с влагой в воздухе или влагой на коже, он легко вызывает ожог. С расплавленным металлом нужно быть ещё осторожнее, так как его активность повышается в разы. При работе с ним нужно помнить, что это щелочь. Уменьшить его действие на кожу можно обычным уксусом.

В организме литий повышает устойчивость иммунной системы и улучшает работу нервной системы. Но его переизбыток сопровождается головокружением, сонливостью, потерей аппетита. Отравление металлом приводит к снижению либидо, слабости в мышцах, набору веса. При этом может ухудшиться зрение, память и наступить кома. Работать с литием нужно всегда в перчатках, защитном костюме и очках.

) совместно со специалистами из Политехнической школы инженерии при Нью-Йоркском университете создали новый металлокомпозит , который настолько лёгок, что может держаться на воде и не тонуть .

Композит с матрицей из магниевого сплава представляет так называемую синтактическую пену - тип композитного материала, созданный путём заполнения металлической, полимерной или керамической матрицы полыми частицами. В данном случае матрица из магниевого сплава наполнена полыми частицами карбида кремния , разработанными DST. То есть она представляет собой своего рода металлическую пену.

Учёные утверждают, что в результате у них получилась самая лёгкая в мире синтактическая пена с металлической матрицей. "Пенная" структура позволяет материалу иметь плотность 0,92 грамма на один кубический сантиметр, то есть меньше плотности воды, так что материал может удерживаться на поверхности жидкости и не тонуть.

Чрезвычайно прочные шарики из карбида кремния способны выдерживать давление более 1757,6 килограмм-силы на квадратный сантиметр. Такие сферы также могут обеспечить ударопрочность, действуя как поглотители энергии.

Изменение количества сфер, которые добавляются к матрице, позволяют композиту приобретать и некоторые другие свойства, которые могут быть настроены в зависимости от цели применения.

В будущем подобный материал может быть использован для строительства морских судов, которые будут оставаться на плаву даже после получения повреждений корпуса. Кроме того, материал получился достаточно плотным, чтобы изготовленное из него судно могло выдержать суровые морские условия.

Материал также может похвастаться термостойкостью, что делает его жизнеспособной альтернативой лёгким композитам с полимерной матрицей , которые были в центре внимания многих исследований в последние годы и использовались для изготовления компонентов морских судов и автомобилей (вместо более тяжёлых компонентов на основе металлов).

"Эта новая разработка в области композиционных материалов - очень лёгкий материал, который позволит снова вернуться к изготовлению компонентов из металла, - говорит профессор кафедры механики и аэрокосмической техники Нихил Гапта (Nikhil Gupta), соавтор исследования. -Способность металлов выдерживать более высокие температуры может стать огромным преимуществом, если компоненты изготавливаются для двигателя или же им придётся контактировать с выхлопными газами".

Среди некоторых потенциальных способов использования материала не только облицовка дна корабля, также, по мнению создателей, он пригодится для создания автомобильных деталей, плавучих машин и брони для военного транспорта. Последний пример объясняет, почему разработки DST осуществляет при поддержке Научно-исследовательской лаборатории армии США (US Army Research Laboratory).

По словам разработчиков, прототипы устройств из нового материала будут протестированы в течение ближайших трёх лет.

Подробности - в научной статье , опубликованной в издании Journal of Impact Engineering.

Российско-американская команда исследователей представила революционную разработку: ультралёгкий алюминий, который не тонет в воде.

Химики из российского Южного Федерального университета и Университета штата Юта (США) разработали новую сверхлегкую кристаллическую форму алюминия. Она не тонет в воде и может быть применена в различных сферах экономики и промышленности. Для создания нового материала был применен инновационный подход с использованием вычислительной техники. Об исследовании сообщает Science Daily .

Профессор Александр Болдырев (Alexander Boldyrev) из Университета Юты совместно с коллегами из Южного федерального университета реструктурировал обычный алюминий на молекулярном уровне. Для этого специалисты использовали компьютерное моделирование и «собрали» новую кристаллическую решётку.

Болдырев поясняет: его команда работала с кристаллической решёткой алмаза. Взяв за основу её структуру, учёные заменили каждый атом углерода тетраэдром алюминия.
В итоге получилась новая метастабильная форма легчайшего алюминия. Его плотность 0,61 грамма на кубический сантиметр (для сравнения: обычный алюминий имеет плотность 2,71 грамма на кубический сантиметр).
А это означает, что алюминий с новой кристаллической формой будет плавать на поверхности воды , плотность которой составляет один грамм на кубический сантиметр.

Такое свойство открывает гигантские перспективы для использования нового металла – относительно недорогого и простого в производстве, стойкого к коррозиям парамагнетика. Космическое строительство, медицина, электроника, автомобилестроение – это лишь некоторые сферы, в который ультралёгкий алюминий найдёт применение, уверены авторы работы. Правда, им ещё предстоит протестировать новый материал в различных условиях, в первую очередь – проверить его прочность.

Похожие статьи

© 2024 cryptodvizh.ru. Сryptodvizh - Бизнес новости.