Привести классификации ядерных энергоустановок в мире. Термические энергоустановки

В основном в настоящее время применяется разделение электростанций на КЭС, ТЭЦ, ПГУ, ГТЭС, АЭС, ГЭС. Для более полной характеристики электростанции можно классифицировать по ряду основных признаков:

По виду первичных энергоресурсов;

По процессам преобразования энергии;

По количеству и виду энергоносителей;

По видам отпускаемой энергии;

По кругу охватываемых потребителей;

По режиму работы.

1. По видам использованных первичных энергоресурсов различаются электростанции, применяющие: органическое топливо (ТЭС); ядерное топливо (АЭС); гидроэнергию (ГЭС, ГАЭС и ПЭС); солнечную энергию (СЭС); энергию ветра (ВЭС); подземное тепло (геотермальные ГЕОЭС).

2. По применяемым процессам преобразования энергии выделяются электростанции, в которых: полученная тепловая энергия преобразуется в механическую, а затем в электрическую энергию (ТЭС. АЭС); полученная тепловая энергия непосредственно превращается в электрическую (электростанции с МГД-генераторами, МГД-ЭС, СЭС с фотоэлементами и др.); энергия воды и воздуха превращается в механическую энергию вращения, затем в электрическую (ГЭС, ГАЭС, ПЭС, ветроэлектрические ВЭС, воздушно-аккумулирующие газотурбинные электростанции).

3. По количеству и виду используемых энергоносителей различаются электростанции: с одним энергоносителем (КЭС и ТЭЦ, атомные КЭС и ТЭЦ на паре, АЭС с газовым энергоносителем, ГТЭС); с двумя разными по фазовому состоянию энергоносителями (парогазовые электростанции, в том числе ПГ-КЭС и ПГ-ТЭЦ); с двумя разными энергоносителями одинакового фазового состояния (бинарные электростанции).

4. По видам отпускаемой энергии различаются электростанции: отпускающие только или в основном электрическую энергию (ГЭС, ГАЭС, КЭС, атомные КЭС, ГТЭС, ПГ-КЭС и др.); отпускающие электрическую и тепловую энергию (ТЭЦ, атомные ТЭЦ, ГТ-ТЭЦ и др.). в последнее время КЭС и атомные КЭС все в большей степени увеличивают отпуск тепловой энергии. Теплоэлектроцентрали (ТЭЦ), кроме электроэнергии, вырабатывают тепло; использование тепла отработавшего пара при комбинированном производстве энергии обеспечивает значительную экономию топлива. Если отработавший пар или горячая вода используются для технологический процессов, отопления и вентиляции промышленных предприятий, то ТЭЦ называются промышленными. При использовании тепла для отопления и горячего водоснабжения жилых и общественных зданий городов ТЭЦ называются коммунальными (отопительными). Промышленно-отопительные ТЭЦ снабжают теплом, как промышленные предприятия, так и население. На отопительных ТЭЦ наряду с теплофикационными турбоустановками имеются водогрейные котлы для отпуска тепла в периоды пиков тепловой нагрузки.

5. По кругу охватываемых потребителей выделяются: районные электростанции (ГРЭС –государственная районная электрическая станция); местные электростанции для электроснабжения отдельных населенных пунктов; блок-станции для электроснабжения отдельных потребителей.

6. По режиму работы в ЭЭС различаются электростанции: базовые; маневренные или полупиковые; пиковые.

К первой группе относятся крупные, наиболее экономичные КЭС, атомные КЭС, ТЭЦ на теплофикационном режиме и частично ГЭС, ко второй группе – маневренные конденсационные электростанции, ПГ-КЭС и ТЭЦ, к третьей группе – пиковые ГЭС, ГДЭС, ГТЭС. Частично в пиковом режиме работают ТЭЦ и менее экономичные КЭС.

Кроме перечисленных выше общих основных признаков классификации электростанций, для каждого их типа имеются свои внутренние признаки классификации. Например, КЭС и ТЭЦ различаются по начальным параметрам, технологической схеме (блочные и с поперечными связями), единичной мощности блоков и т.п. АЭС классифицируются по типу реакторов (на тепловых и быстрых нейтронах), по конструкции реакторов и др.

Наряду с рассмотренными выше основными типами электростанций в России развиваются также парогазовые и чисто газотурбинные электростанции. Парогазовые электростанции (ПГЭС) применяются в двух вариантах: с высоконапорным парогенератором и со сбросом выхлопных газов в котлоагрегаты обычного типа. При первом варианте продукты сгорания из камеры сгорания под давлением направляются в высоконапорный компактный парогенератор, где вырабатывается пар высокого давления, а продукты сгорания охлаждаются до 750-800ºС, после чего они направляются в газовую турбину, а пар высокого давления подается в паровую турбину.

При втором варианте продукты сгорания из камеры сгорания с добавлением необходимого количества воздуха для снижения температуры до 750-800ºС направляются в газовую турбину, а оттуда отходящие газы при температуре примерно 350-400ºС с большим содержанием кислорода поступают в обычные котлоагрегаты паротурбинных ТЭС, где выполняют функцию окислителя и отдают свое тепло.

А первой схеме должен сжигаться природный газ либо специальное газотурбинное жидкое топливо, во второй схеме такое топливо должно сжигаться только в камере сгорания газовой турбины, а в котлоагрегатах – мазут или твердое топливо, что представляет определенное преимущество. Комбинирование двух циклов даст повышение общего КПД ПГЭС примерно на 5-6% по сравнению с паротурбинной КЭС. Мощность газовых турбин ПГЭС составляет примерно 20-25% мощности парогазового блока. В связи с тем, что удельные капиталовложения в газотурбинную часть ниже, чем в паротурбинную, в ПГЭС достигается уменьшение удельных капиталовложений на 10-12%. Парогазовые блоки обладают большей маневренностью, чем обычнее конденсационные блоки, и могут быть использованы для работы в полупиковой зоне, так как более экономичны, чем маневренные КЭС.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

2. Ядерный реактор. Типы ядерных реакторов

Заключение

Введение

Во второй половине 40-х гг. советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в СССР, в городе Обнинск, расположенном в Калужской области.

Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом. Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Главный принцип работы атомной электростанции - использование ядерного топлива для выработки электроэнергии.

Данный проект посвящен теме «Атомные электростанции». Актуальность данной темы обусловлена повышением интереса современной науки к атомной энергетике в связи с увеличением потребностей человечества в энергии. Целью работы является изучение принципов работы АЭС, оборудования, используемого на АЭС, механизмов протекания ядерных реакций, а также методов обеспечения безопасности атомных установок. В работе представлены: важнейшая классификация атомных установок, строение и принцип действия ядерного реактора, термодинамические циклы паротурбинной установки и методы повышения её КПД, а также примеры ядерных реакций и реакций термоядерного синтеза.

1. Классификация атомных электростанций

атомный электростанция ядерный энергетика

Атомные электростанции подразделяются по следующим параметрам:

1. Количество контуров.

2. Тип реакторов. Реакторы подразделяются на реакторы на тепловых и быстрых нейтронах.

3. Тип турбин: на насыщенном или перегретом водяном паре.

4. Тип теплоносителя - газовый, водяной, жидкометаллический.

5. Конструктивные особенности реактора, например реакторы канального типа или реакторы корпусного типа.

6. Тип замедлителя: графитовый или тяжеловодный.

Важнейшей классификацией атомных электростанций является классификация по числу контуров. Число контуров выбирают с учетом требований обеспечения безопасной работы блока при всех возможных аварийных ситуациях. Увеличение числа контуров связано с появлением дополнительных потерь в цикле и соответственно уменьшением КПД АЭС.

Работа АЭС основана на преобразовании энергии, полученной в ходе ядерной реакции, в электрическую энергию. Это преобразование происходит в несколько стадий.

В системе любой АЭС различают теплоноситель и рабочее тело. Как известно, на работающих станциях процесс преобразования энергии источника в тепловую происходит непрерывно и в случае прекращения теплоотвода произойдет неизбежный перегрев установки. Следовательно, наряду с источником необходим потребитель тепловой энергии, который будет забирать тепло и либо преобразовывать его в другие формы энергии либо передавать его в другие системы. Передача тепла от источника к потребителю осуществляется с помощью теплоносителя, т.е. назначение теплоносителя -- отвод теплоты, которая выделяется в реакторе. Большое распространение в энергетических реакторах получила вода, которая за счет большой теплоемкости не требует больших расходов, но требует повышенного давления. Среда, которая преобразует тепловую энергию в механическую, т.е. совершает работу, является рабочим телом. Рабочим телом на АЭС является водяной пар. Требования к чистоте рабочего тела, поступающего на турбину и теплоносителя, который всегда радиоактивен, очень высоки, поэтому для них необходимы замкнутые контуры. Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Такие реакторы работают с принудительной циркуляцией теплоносителя, для чего устанавливают главный циркуляционный насос. Таким образом, контур теплоносителя является одновременно и контуром рабочего тела. В одноконтурных схемах все оборудование работает в радиационно-активных условиях, что осложняет его ремонт.

Рис. 1 Тепловая схема АЭС: а - одноконтурная; б - двухконтурная; в - трехконтурная; 1 - реактор; 2 - турбина; 3- турбогенератор; 4- конденсационная установка; 5- конденсатный насос; б - система регенеративного подогрева питательной воды; 7 - питательный насос; 8 - парогенератор; 9 - циркуляционный насос контура реактора; 10 - циркуляционный насос промежуточного контура

Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым, а контур рабочего тела -- вторым. На двухконтурной станции обязателен парогенератор, который разделяет первый и второй контуры. В таких схемах радиоактивным является только контур реактора, в котором теплоноситель прокачивается через парогенератор, в котором отдает тепло рабочему телу второго контура, не соприкасаясь с ним, и циркуляционном насосом подается обратно в реактор. Второй контур включает оборудование, которое работает при отсутствии радиационной активности -- это упрощает ремонт оборудования. Пар из парогенератора поступает на турбину, затем в конденсатор и насосом возвращается в парогенератор. Передача теплоты в парогенераторе требует перепада температур между теплоносителем и рабочим телом. Для водного теплоносителя это означает, что в первом контуре должно быть давление выше, чем во втором.

Если на АЭС в качестве теплоносителя используется не вода, а например, такой теплоноситель, как жидкий натрий, то для нормальной работы станции необходимо создание дополнительного, промежуточного контура. В процессе эксплуатации возможно возникновение неплотностей на отдельных участках парогенератора из-за разности давлений первого и второго контуров. Таким образом, может возникнуть перетечка теплоносителя, приводящая к радиоактивному загрязнению второго контура. Так как жидкий натрий интенсивно взаимодействует с паром и водой, то существует опасность выброса радиоактивных веществ в обслуживаемые помещения. Поэтому создают дополнительный, промежуточный контур для того, чтобы даже в аварийных ситуациях можно было избежать контакта радиоактивного натрия с водой или водяным паром. Такую АЭС называют трехконтурной.

Радиоактивный жидкометаллический теплоноситель насосом прокачивается через реактор и промежуточный теплообменник, в котором отдает теплоту нерадиоактивному жидкометаллическому теплоносителю. Последний прокачивается через парогенератор по системе, образующей промежуточный контур. Давление в промежуточном контуре поддерживается более высоким, чем в первом. Поэтому перетечка радиоактивного натрия из первого контура в промежуточный невозможна. В связи с этим при возникновении неплотности между промежуточным и вторым контурами контакт воды или пара будет только с нерадиоактивным натрием.

2. Ядерный реактор и его типы

Сердце каждой АЭС -- это ядерный реактор, устройство, в котором протекает управляемая цепная ядерная реакция. В качестве ядерного топлива в настоящее время могут использоваться изотопы урана - U235 и U238, а также Pu239. Деление ядер происходит под действием нейтронов с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов.

В ядерных реакторах на тепловых нейтронах в качестве ядерного топлива используется изотоп урана U235, деление которого происходит только в том случае, если нейтроны замедлены в 3-4 раза по сравнению с быстрыми. Поэтому, для контроля цепной реакции в реакторах используют материалы, в которых нейтроны теряют часть энергии. Такие материалы, снижающие скорость нейтронов, называются замедлителями ядерных реакций. Хорошие замедлители нейтронов - графит, обычная и тяжелая вода, соединения бериллия.

Ядерный реактор состоит из активной зоны и отражателя. Активная зона содержит замедлитель и ядерное топливо, которое находится в топливных элементах, называемых твэлами. Сквозь активную зону реактора протекает теплоноситель. Как правило, это обычная вода, но также может использоваться жидкий графит и тяжелая вода. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны.

Рис. 2 Схематическое устройство реактора на тепловых нейтронах: 1 -- управляющий стержень; 2 -- радиационная защита; 3 -- теплоизоляция; 4 -- замедлитель; 5 -- ядерное топливо; 6 -- теплоноситель

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК -- кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

ТВЭЛ -- тепловыделяющий элемент. Это стержни в циркониевой оболочке, внутри которых расположены таблетки из диоксида урана.

В реакторах на быстрых нейтронах в качестве ядерного топлива используются изотоп урана U238 и плутония Pu239. Такие реакторы сильно отличаются от реакторов всех остальных типов. Его основное назначение - обеспечение расширенного воспроизводства делящегося плутония из U238 с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Прежде всего, в реакторе на быстрых нейтронах нет замедлителя. В связи с этим в качестве топлива используется не U235, а Pu239 и U238, которые могут делиться от быстрых нейтронов. Плутоний необходим для обеспечения достаточной плотности нейтронного потока, которую не может обеспечить один U238. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах, в связи с чем вместо воды (которая просто не справится с таким объемом энергии для передачи) используется расплав натрия (его температура на входе - 370 градусов, а на выходе - 550). Поэтому для нормальной работы АЭС с реактором на быстрых нейтронах необходим третий контур. При работе такого реактора происходит очень интенсивное выделение нейтронов, которые поглощаются слоем U238, расположенного вокруг активной зоны. При этом уран превращается в Pu239, который, в свою очередь, может использоваться в реакторе как делящийся элемент.

В настоящее время реакторы на быстрых нейтронах широкого распространения не получили, в основном из-за сложности конструкции и проблемы получения достаточно устойчивых материалов для конструкционных деталей. Считается, что в будущем такие реакторы получат широкое распространение.

3. Работа основного технологического оборудования АЭС

Основное технологическое оборудование АЭС представлено на рис.1.

Циркулируя через активную зону реактора и омывая твэлы, теплоноситель получает тепло. Эта циркуляция осуществляется главным циркуляционным насосом. Однофазность теплоносителя вызывает необходимость включения в состав оборудования АЭС компенсатор объема (давления), задачу которого в одноконтурной АЭС выполняет барабан-сепаратор. Обязательным агрегатом двухконтурной и трехконтурной АЭС является парогенератор. Проходя внутри теплообменных трубок парогенератора, теплоноситель первого контура отдает тепло воде второго контура, которая превращается в пар. Пар направляется в паровую турбину, устройство, предназначенное для преобразования тепловой энергии в механическую. Принцип действия любой турбины схож с принципом действия ветряной мельницы. Пар в турбине вращает лопатки, распложенные по кругу на роторе. Ротор турбины жестко связан с ротором генератора, который вырабатывает электрический ток. Параметры турбины и ее конструктивная схема различаются - для водного теплоносителя это турбина насыщенного пара среднего давления, для жидкометаллического - турбина перегретого пара высокого давления. В турбине пар, адиабатно расширяясь, совершает работу. Оттуда отработавший пар направляется в конденсатор. Конденсатор играет двоякую роль в установке: во-первых, он имеет паровое и водяное пространства, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей. Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу и совершать за счет этого дополнительную работу.

Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и вновь направляется в парообразующий аппарат - реактор или парогенератор.

Таким образом, технологический процесс производства электроэнергии на АЭС включает в себя: повышение температуры конденсата до температуры насыщения и получение из него пара, расширение пара в турбине со снижением давления и температуры от начального значения перед турбиной до значения, отвечающего вакууму в конденсаторе. Таким образом, реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл. Теоретическим циклом современной паросиловой установки является цикл Ренкина.

Линия К на диаграммах является разделительной: при соответствующих параметрах для всех точек, лежащих на диаграмме выше этой линии, существует только пар, ниже - паро-водная смесь.

Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (линия 2 - 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3-4.

Малая величина отрезка адиабаты 3-4 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1-2, является важным преимуществом цикла Ренкина.

Из насоса вода под давлением P2 поступает в парогенератор, где к ней в изобарно (процессе 4-5 P1=const) подводится тепло. Вначале вода в парогенераторе нагревается до кипения (участок 4-5 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 5-6 изобары P1=const). На участке 6-1 происходит перегрев пара в парогенераторе, после чего пар поступает в турбину. Процесс расширения в турбине изображается адиабатой 1-2.Отработанный влажный пар поступает в конденсатор, и цикл замыкается.

Эффективность преобразования теплоты в работу в обратимом цикле характеризуется термическим КПД, определяемым формулой:

где lц - работа цикла, q1 - подводимая теплота.

В данном цикле работа цикла lц является разностью работ - полученной в турбине lт и затраченной в насосе lн.

Поэтому выражение для термического КПД цикла примет вид:

Lт - lн / q1

Все процессы, составляющие цикл паротурбинной установки, происходят в потоке вещества. Поэтому при анализе их следует применять уравнение первого закона термодинамики для потока:

q1 = i2 - i1 + w22 / 2 - w12/2 + lтех

Работы турбины и насоса рассматриваем как техническую работу lтех. В этом случае работа процесса адиабатного расширения пара в турбине при условии равенства кинетической энергии его на входе и выходе из турбины равна:

При том же условии абсолютная величина работы адиабатного процесса сжатия воды в насосе составит:

Тогда термический КПД цикла Ренкина может быть представлен как:

? =[(i2 - i1) - (i3 - i2)]/(i1 - i3)

Удельная работа насоса по абсолютной величине составляет обычно менее 3-4 % от работы турбины, поэтому иногда в расчётах этой работой пренебрегают.

ii - это величины энтальпии воды и пара в соответствующих точках цикла, они могут быть найдены или с помощью соответствующих таблиц.

Возможность повышения термического КПД цикла Ренкина за счет увеличения начального давления пара ограничивается требованием не превысить предельного значения влажности пара в конце расширения в турбине по условию безопасности ее работы. Этого можно избежать, изменив конфигурацию цикла введением вторичного перегрева пара при некотором промежуточном давлении. Для этого используется двух ступенчатая турбина, состоящая из цилиндра высокого давления и нескольких цилиндров низкого давления. Так называемый перегрев пара происходит в специальном элементе установки - пароперегревателе, где пар нагревается до температуры, превышающей температуру насыщения при данном давлении P1. В этом случае средняя температура подвода тепла увеличивается по сравнению с температурой подвода тепла в цикле без перегрева и, следовательно, термический КПД цикла возрастает. Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.

Рис. 3 Цикл Ренкина с вторичным перегревом пара в T-S диаграмме

Пар из парогенератора направляется в цилиндр высокого давления (ЦВД), часть пара отбирается для перегрева. Расширяясь в цилиндре высокого давления (процесс на диаграмме 1-a), пар совершает работу. После ЦВД пар направляется в пароперегреватель, где за счет охлаждения отобранной в начале части пара, осушается и нагревается до более высокой температуры, (но уже при более низком давлении, процесс а-b на диаграмме) и поступает в цилиндры низкого давления турбины (ЦНД). В ЦНД пар расширяясь, снова совершает работу (процесс b-2 на диаграмме) и поступает в конденсатор. Остальные процессы соответствуют процессам в рассмотренном выше цикле Ренкина. КПД цикла с промежуточным перегревом пара определяется по формуле:

? = (lЧВД + lЧНД - lН) / q1 = ((i1 - ia) + (ib - i2) - (i3 - i2)) / ((i1 - i3) + (ib - ia)

В зависимости от выбора давления, при котором производится вторичный перегрев пара, КПД цикла с вторичным перегревом может быть большим или меньшим, чем КПД цикла без вторичного перегрева. Действительно, цикл со вторичным перегревом пара можно представить как совокупность двух циклов - исходного цикла 1-с-2ґ-3-1 и дополнительного a-b-2-c-a. Поскольку оба цикла имеют одинаковую температуру отвода теплоты T2, то суммарный цикл будет иметь термический КПД выше, чем у исходного, при условии, что средняя температура Tср подвода теплоты в дополнительном цикле будет выше, чем в исходном. В свою очередь средняя температура подвода теплоты в дополнительном цикле зависит от температуры начала вторичного перегрева, которая определяется давлением, при котором этот перегрев происходит. При уменьшении давления и, соответственно, температуры уменьшается средняя температура подвода теплоты в дополнительном цикле, но увеличивается работа, получаемая в этом цикле, и ее вклад в суммарную работу сложного цикла. Из-за противоположного влияния этих двух факторов существует оптимальное значение температуры начала вторичного перегрева пара, при которой обеспечивается максимальный прирост термического КПД цикла с промежуточным перегревом пара. Применение вторичного перегрева пара позволяет повысить экономичность паротурбинной установки на 4 -5%.

Регенеративный подогрев питательной воды

В теплотехнике слово «регенерация» означает возвращение части отходящей теплоты для дальнейшего её использования в установке. Регенеративным подогревом питательной воды называют подогрев конденсата, поступающего из конденсатора в реактор (в случае одноконтурной АЭС) или в парогенератор (в случае двухконтурной АЭС). Малое значение КПД цикла Ренкина по сравнению с циклом Карно связано с тем, что большое количество тепловой энергии при конденсации пара передается охлаждающей воде в конденсаторе.

Для снижения потерь часть пара из турбины отбирается и направляется на регенерационные подогреватели, где тепловая энергия, высвобождаемая при конденсации отобранного пара, используется для подогрева воды, полученной после конденсации основного парового потока. В реальных паросиловых циклах регенерация осуществляется с помощью регенеративных, поверхностных или смешивающих, теплообменников, в каждый из которых поступает пар из промежуточных ступеней турбины (так называемый регенеративный отбор).

4. Ядерные реакции. Термоядерный синтез

Атом - это строительный элемент Вселенной. Существует всего около сотни атомов различных типов. Большинство элементов стабильны (например, кислород и азот атмосферы; углерод, кислород и водород - основные составляющие нашего тела и всех других живых организмов). Другие элементы, главным образом очень тяжелые, нестабильны, и это означает, что они спонтанно распадаются, порождая другие элементы. Это преобразование называется ядерной реакцией.

Ядерные реакции - превращения атомных ядер при взаимодействии с элементарными частицами, г-квантами или друг с другом.

Ядерные реакции разделяют на два вида: ядерное деление и термоядерный синтез.

Ядерная реакция деления -- процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным.

Самопроизвольное (спонтанное) - это деление ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.

Самопроизвольное деление впервые было обнаружено для природного урана. Как и любой другой вид радиоактивного распада, спонтанное деление характеризуется периодом полураспада (периодом деления). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет для 93Np237 до нескольких десятых долей секунды для трансурановых элементов).

Вынужденное деление ядер может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, б-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления. Для атомной энергетики большее значение играет деление, вызванное нейтронами. Реакция деления тяжелых ядер осуществлена впервые на уране U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации. Эту энергию ядро урана получает, захватывая нейтрон. Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка радиоактивны и испускают 2 или 3 вторичных нейтрона.

Рис. 4 Деление ядра урана

Вторичные нейтроны поглощаются соседними ядрами урана, что вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением колоссальной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Ядерная реакция характеризуется тепловым эффектом, который представляет собой разность масс покоя вступающих в ядерную реакцию и образующихся в результате реакции ядер, т.е. энергетический эффект ядерной реакции определяется в основном разницей масс конечных и исходных ядер. На основании эквивалентности энергии и массы можно вычислить энергию, выделяющуюся или затраченную при протекании ядерной реакции, если точно знать массу всех ядер и частиц, участвующих в реакции. Согласно закону Эйнштейна:

E = (mA + mx - mB - my)c2

где mА и mх - массы соответственно ядра мишени и бомбардирующего ядра(частицы);

mB и my - массы и образующихся в результате реакции ядер.

Чем больше энергии выделяется при образовании ядра, тем оно прочнее. Энергией связи ядра называют количество энергии, требуемой для разложения ядра атома на составные части - нуклоны (протоны и нейтроны).

Примером неуправляемой цепной реакции деления может послужить взрыв атомной бомбы, управляемая ядерная реакция осуществляется в ядерных реакторах.

Термоядерный синтез - это реакция, обратная делению атомов, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Осуществление управляемого термоядерного синтеза даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии, который основан на столкновении ядер изотопов водорода, а водород - самое распространенное вещество во Вселенной.

Процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

2D + 3T > 4He (3,5 МэВ) + 1n (14,1 МэВ)

Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. Дейтерий содержится в морской воде. Его запасы общедоступны и очень велики: на долю дейтерия приходится около 0,016% общего числа атомов водорода, входящих в состав воды, в то время как мировой океан покрывает 71% площади поверхности Земли. Реакция с участием трития является более привлекательной, т. к. сопровождается большим выделением энергии и протекает со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

Реакция c так называемым лунным изотопом 3Не имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией.

2D + 3He > 4He (3,7 МэВ) + 1p (14,7 МэВ)

Преимущества:

1. 3He не радиоактивен.

2. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;

3. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии.

Природная изотопная распространённость в атмосфере 3He составляет 0,000137 %. Большая часть 3He на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

Гелий-3 является побочным продуктом реакций, протекающих на Солнце. В результате, на Луне, у которой нет атмосферы, этого ценного вещества находится до 10 миллионов тонн (по минимальным оценкам -- 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 миллионов тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного грунта. Содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 миллионов тонн грунта. Температура, при которой возможно осуществление реакции термоядерного синтеза достигает величины порядка 108 - 109 К. При этой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. Таким образом, сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфигурации в течение времени, для протекания ядерных реакций.

Термоядерная энергетика имеет важные преимущества перед атомными станциями: в ней используется абсолютно нерадиоактивные дейтерий и изотоп гелия-3 и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. В природных условиях термоядерные реакции протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

Все химические элементы нашей планеты и Вселенной в целом образовались в результате термоядерных реакций, которые происходят в ядрах звезд. Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются горением C, O, Si и последующих элементов - вплоть до Fe и Ni. Каждому этапу звездной эволюции соответствуют определенные термоядерные реакции. Первыми в цепи таких ядерных реакций стоят водородные термоядерные реакции. Они протекают двумя путями в зависимости от начальной температуры в центре звезды. Первый путь - водородный цикл, второй путь - CNO-цикл.

Водородный цикл:

1H + 1H = 2D + e+ + v +1,44 МэВ

2D + 1H = 3He + г +5,49 МэВ

I: 3He + 3He = 4He + 21H + 12,86 МэВ

или 3He + 4He = 7Be + г + 1,59 МэВ

7Be + e- = 7Li + v + 0,862 МэВ или 7Be + 1H = 8B + г +0,137 МэВ

II: 7Li + 1H = 2 4He + 17,348 МэВ 8B = 8Be* + e+ + v + 15,08МэВ

III. 8Be* = 2 4He + 2,99 МэВ

Водородный цикл начинается реакцией столкновения двух протонов (1H, или р) с образованием ядра дейтерия (2D). Дейтерий реагирует с протоном, образуя лёгкий (лунный) изотоп гелия 3Не с испусканием гамма-фотона (г). Лунный изотоп 3Не может реагировать двумя различными путями: два ядра 3Не при столкновении образуют 4Не с отщеплением двух протонов либо 3Не соединяется с 4Не и даёт 7Ве. Последний в свою очередь захватывает либо электрон (е-), либо протон и возникает ещё одно разветвление протон - протонной цепочки реакций. В результате водородный цикл может заканчиваться тремя различными путями I, II и III. Для реализации ветви I первые две реакции В. ц. должны осуществиться дважды, поскольку в этом случае исчезают сразу два ядра 3Не. В ветви III испускаются особенно энергичные нейтрино при распаде ядра бора 8В с образованием неустойчивого ядра бериллия в возбуждённом состоянии (8Ве*), который почти мгновенно распадается на два ядра 4Не. CNO-цикл -- это совокупность трёх сцепленных друг с другом или, точнее, частично перекрывающихся циклов: CN, NO I, NO II. Синтез гелия из водорода в реакциях этого цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в звездном веществе.

Основной путь реакции CN-цикла:

12C + p = 13N + г +1,95 МэВ

13N = 13C + e+ + н +1,37 МэВ

13C + p = 14N + г +7,54 МэВ (2,7·106 лет)

14N + p = 15O + г +7,29 МэВ (3,2·108 лет)

15O = 15N + e+ + н +2,76 МэВ (82 секунды)

15N + p = 12C + 4He +4,96 МэВ (1,12·105 лет)

Суть этого цикла состоит в непрямом синтезе б-частицы из четырёх протонов при их последовательных захватах ядрами, начиная с 12C.

В реакции с захватом протона ядром 15N возможен ещё один исход -- образование ядра 16О и рождается новый цикл NO I-цикл.

Он имеет в точности ту же структуру, что и CN-цикл:

14N + 1H = 15O + г +7,29 МэВ

15O = 15N + e+ + н +2,76 МэВ

15N + 1H = 16O + г +12.13 МэВ

16O + 1H = 17F + г +0,60 МэВ

17F = 17O + e+ + н +2,76 МэВ

17O + 1H = 14N + 4He +1,19 МэВ

NO I-цикл повышает темп энерговыделения в CN-цикле, увеличивая число ядер-катализаторов CN-цикла.

Последняя реакция этого цикла также может иметь другой исход, порождая ещё один NO II-цикл:

15N + 1H = 16O + г +12.13 МэВ

16O + 1H = 17F + г +0,60 МэВ

17F = 17O + e+ + н +2,76 МэВ

17O + 1H = 18F + г +5,61 МэВ

18O + 1H = 15N + 4He +3, 98 МэВ

Таким образом, циклы CN, NO I и NO II образуют тройной CNO-цикл.

Имеется ещё один очень медленный четвёртый цикл, OF-цикл, но его роль в выработке энергии ничтожно мала. Однако этот цикл является весьма важным, при объяснении происхождения 19F.

17O + 1H = 18F + г + 5.61 МэВ

18F = 18O + e+ + н + 1.656 МэВ

18O + 1H = 19F + г + 7.994 МэВ

19F + 1H = 16O + 4He + 8.114 МэВ

16O + 1H = 17F + г + 0.60 МэВ

17F = 17O + e+ + н + 2.76 МэВ

При взрывном горении водорода в поверхностных слоях звёзд, например, при вспышках сверхновых, могут развиваться очень высокие температуры, и характер CNO-цикла резко меняется. Он превращается в так называемый горячий CNO-цикл, в котором реакции идут очень быстро и запутанно.

Химические элементы тяжелее 4He начинают синтезироваться лишь после полного выгорания водорода в центральной области звезды:

4He + 4He + 4He > 12C + г + 7,367 МэВ

Реакции горения углерода:

12C + 12C = 20Ne + 4He +4,617 МэВ

12C + 12C = 23Na + 1H -2,241 МэВ

12C + 12C = 23Mg + 1n +2,599 МэВ

23Mg = 23Na + e+ + н + 8, 51 МэВ

12C + 12C = 24Mg + г +13,933 МэВ

12C + 12C = 16O + 24He -0,113 МэВ

24Mg + 1H = 25Al + г

При достижении температуры 5·109 K в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni.

5. Атомная энергетика и окружающая среда

Целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за опасности аварий, приводящих к выбросу радиоактивных веществ в атмосферу. Общеизвестно, что радиоактивный вещества (радионуклиды) оказывают вредное воздействие на окружающую среду и человека. Радионуклиды могут попадать в организм через легкие при дыхании, вместе с пищей, или действовать на кожные покровы. Последствия облучения разнообразны и очень опасны. Наиболее сильное поражение радиацией вызывает лучевую болезнь, которая может привести к гибели человека. Это заболевание проявляется очень быстро - от нескольких минут до суток. Человечество уже имеет горький опыт знакомства с катастрофическими последствиями выброса радиоактивных веществ. Пример тому авария на Чернобыльской АЭС в 1986 году. В результате взрыва на станции в окружающее пространство было выброшено колоссальное количество радиоактивных веществ. Перемещение в атмосфере радиоактивного облака, осаждение радионуклидов с пылью и дождем, распространение почвенных и поверхностных вод, загрязненных радиоактивными изотопами, - все это привело к облучению сотен тысяч человек на территории свыше 23 тыс. км2.

Если вообще отказаться от ядерной энергетики, будет полностью устранена опасность облучения людей и угроза ядерных аварий. Но тогда для удовлетворения потребностей в энергии придется наращивать строительство ТЭЦ и ГЭС. А это неизбежно приведет к большому загрязнению атмосферы вредными веществами, к накоплению в атмосфере избыточного количества углекислого газа, нарушению теплового баланса в масштабах всей планеты. Радиация - грозная и опасная сила, но при должном отношении с ней вполне можно работать. Характерно, что меньше всего боятся радиации те, кто постоянно имеет с ней дело и хорошо знает все связанные с ней опасности. В настоящее время безопасности реакторов уделяется очень большое внимание. Об этом свидетельствует, в частности, такая цифра: около 70% всех расходов на реактор связано с защитой людей на территории АЭС и за ее пределами. Детально и обоснованно обсуждаются вопросы безопасности эксплуатации ядерных реакторов, не менее горячо - гарантии безопасности населения вблизи атомных электростанций.

Строгие требования, предъявляемые к охране окружающей среды, приводят к тому, что специалисты предлагают строить в подходящих местах своего рода атомные центры, где можно было бы сконцентрировать несколько реакторов большой мощности, а также завод по переработке топлива и хранилище радиоактивных отходов. Вокруг таких атомных центров располагались бы промышленно-аграрные комплексы, использующие вырабатываемую энергию (в том числе в форме водорода и пресной воды). Такой комплекс был бы не только эффективнее и экономичнее, но и лучше защищен от возможных аварий (или диверсий), чем отдельные, рассредоточенные электростанции и предприятия.

Атомные электростанций третьего поколения намного безопаснее, так как на них предусмотрено множество защитных систем. В ходе эксплуатации АЭС обеспечение безопасности основано прежде всего на соответствующих способах детектирования и контроля, которые гарантируют возможность своевременного предупреждения опасных ситуаций. В случае аварии система безопасности должна ограничивать время утечки продуктов деления и способствовать быстрейшему восстановлению нормальных условий действия оборудования, в первую очередь так называемых барьеров, которые должны предотвращать или ограничивать утечку.

Заключение

Изучив работу атомных электростанций, можно прийти к выводу, что они является наиболее надежным и эффективным способом производства электроэнергии. АЭС не производит углекислого газа и других вредных примесей, образующихся при его сгорании, какие имеются, в первую очередь, от угля и нефти, тем более что данные ресурсы исчерпаем и закончатся в обозримом будущем. Рассчитывать на альтернативные источники энергии, такие как энергия ветра, солнечного света, приливов и отливов, нельзя, потому что они не могут обеспечить человечество энергией в полной мере. Атомная энергетика является той отраслью, которая находится на начальном этапе своего развития.

В настоящее время самыми распространенными являются двухконтурные АЭС, так как они являются более безопасными, чем одноконтурные, и более экономичными, чем трехконтурные. Основным циклом паротурбинной установки является цикл Ренкина с вторичным перегревом пара, дополненный системой регенеративного подогрева питательной воды.

Наличие различных ядерных технологий, доказанная экономическая конкурентоспособность и техническая безопасность, перспектива разработки ядерных реакторов на тепловых нейтронах, а также реакторов, осуществляющих управляемую реакцию термоядерного синтеза, на мой взгляд, делают ядерную энергию фаворитом в обеспечении значительной доли производства энергии в настоящем и в будущем.

Список используемой литературы

1. Т.Х. Маргулова «Атомные электрические станции». 1978 г

2. А.А. Александров «Термодинамические основы циклов теплоэнергетических установок» М.: Издательство МЭИ, 2004 г.

Размещено на Allbest.ru

...

Подобные документы

    История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.

    реферат , добавлен 27.03.2015

    Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация , добавлен 23.03.2015

    Схема работы атомных электростанций. Типы и конструкции реакторов. Проблема утилизации ядерных отходов. Принцип действия термоядерной установки. История создания и разработка проекта строительства первой океанской электростанции, перспективы применения.

    реферат , добавлен 22.01.2011

    Физические основы ядерной энергетики. Основы теории ядерных реакторов - принцип вырабатывания электроэнергии. Конструктивные схемы реакторов. Конструкции оборудования атомной электростанции (АЭС). Вопросы техники безопасности на АЭС. Передвижные АЭС.

    реферат , добавлен 16.04.2008

    Атомные электростанции (АЭС)–тепловые электростанции, которые используют тепловую энергию ядерных реакций. Ядерные реакторы, используемые на атомных станциях России: РБМК, ВВЭР, БН. Принципы их работы. Перспективы развития атомной энергии в РФ.

    анализ книги , добавлен 23.12.2007

    История и перспективы развития атомной электроэнергетики. Основные типы атомных электростанций (АЭС), анализ их преимуществ и недостатков, а также особенности выбора для них реактора. Характеристика атомного комплекса РФ и действующих АЭС в частности.

    курсовая работа , добавлен 02.11.2009

    Виды электростанций, их особенности, достоинства и недостатки, влияние на окружающую среду. Источники энергии для их деятельности. Развитие и проблемы ядерной энергетики. Принципы концепции безопасности атомных ЭС. Допустимые и опасные дозы облучения.

    презентация , добавлен 06.03.2015

    Прообраз ядерного реактора, построенный в США. Исследования в области ядерной энергетики, проводимые в СССР, строительство атомной электростанции. Принцип действия атомного реактора. Типы ядерных реакторов и их устройство. Работа атомной электростанции.

    презентация , добавлен 17.05.2015

    Устройство и основные агрегаты ядерных энергетических установок атомных электростанций различного типа. Конструктивные особенности АЭС с газоохлаждаемыми, водо-водяными и водо-графитовыми энергетическими реакторами, с реакторами на быстрых нейронах.

    реферат , добавлен 19.10.2012

    Мировые лидеры в производстве ядерной электроэнергии. Классификация атомных электростанций. Принцип их действия. Виды и химический состав ядерного топлива и суть получения энергии из него. Механизм протекания цепной реакции. Нахождение урана в природе.

Принципы классификации энергоустановок. Классы, подклассы, группы, подгруппы.

Классификация энергоустановок

ЧАСТЬ ВТОРАЯ

ЭНЕРГОУСТАНОВКИ,
РАБОТАЮЩИЕ НА
СВОБОДНОЙ ЭНЕРГИИ



Класс – определяется по основному процессу и виду исходной (потребляемой) энергии.

Подкласс – определяется по характерным особенностям и принятым (привычным) наименованиям.

Группа – определяется по виду производимой (вырабатываемой) энергии.

Подгруппа – определяет тип установки по конструктивным отличиям.

В зависимости от специфических особенностей и состояния разработок указанное деление не всегда точно может соблюдаться. Основных классов – восемь:

1- термические энергоустановки: в них основной процесс энерговыделения – фазовый переход высшего рода (ФПВР), то есть – частичное или полное расщепление атомов на элементарные частицы – электрино и электроны. Исходная энергия – это потенциальная энергия связи элементарных частиц в атоме – энергия, аккумулированная в веществе.

2- природные энергоустановки, то есть установки, использующие энергию природных явлений непосредственно.

3- кориолисовые энергоустановки – основной процесс производства энергии связан с самораскруткой ротора кориолисовыми силами. Исходная энергия радиального потока вещества может быть различной: гидравлическая, химическая, магнитная,...

4- электромагнитные энергоустановки – основной процесс – преобразование потоков электрино в различные виды энергии: механическую, тепловую, электрическую.

5- виброрезонансные энергоустановки – основной процесс – энергообмен рабочего тела в условиях резонанса колебаний. Исходной является энергия внешней среды, в частности, молекул атмосферного воздуха.

6- эфирные энергоустановки – основной процесс – направленное сгущение эфира, в частности, электринного газа. Исходная энергия – эфира.

7- аккумуляторные энергоустановки – основной процесс – аккумуляция энергии (электрической, химической, тепловой,...) и отдача ее при разряде аккумулятора.

8- комбинированные энергоустановки – установки с несколькими разнотипными процессами энерговыделения, которые затруднительно отнести к одному из указанных классов.

В этот класс входят все традиционные энергоустановки на органическом топливе, ядерные, водородные и новые установки естественной энергетики.

К традиционным относятся: двигатели внутреннего и внешнего сгорания, газо- и паротурбинные установки, а также различные тепловые, котельные установки.

К ядерным относятся современные атомные электро- и теплостанции, на которых процесс энерговыделения идет с полным распадом радиоактивных веществ.

Водородные энергоустановки используют водород, который в реакции с кислородом дает воду.



Перечисленные энергоустановки достаточно известны и по ним имеется много технической литературы, поэтому нет необходимости их подробно описывать.

Следует подчеркнуть, что в них используются ограниченные природные ресурсы: уголь, нефть, газ, уран..., не восполняемые природой так быстро, как они расходуются. Для этих установок характерна ущербная экология, пагубная для человечества.

Установки естественной энергетики /1/ свободны от указанных недостатков, так как используют только частичный, щадящий, распад вещества (воздух, вода) без изменения химических свойств вследствие малого дефекта массы порядка 10 -6 %, который восполняется в природных условиях.

Термоядерные энергоустановки, по которым разработки ведутся уже несколько десятилетий с нулевым результатом, в классификацию не попали, так как в соответствии с современной теорией /1,2/ они неработоспособны.

Федеральное агентство по образованию

ГОУ ВПО “Поморский государственный университет им. М.В.Ломоносова”

Факультет технологии и предпринимательства

План-конспект урока

по теме: “Атомная электростанция”.

Архангельск 2010

План конспект урока

Тема урока. Атомные электростанции.

Цели урока:

1) Обучающая:

Познакомить с общими сведениями об атомных электростанциях;

Раскрыть основное значение отдельных элементов устройства атомных электростанций;

Ознакомить с выгодными местами расположения атомных электростанций;

Рассказать о достоинствах и недостатках атомных электростанциях;

Ознакомить учащихся с последними данными о строительстве атомных электростанциях в Архангельской области.

2) Воспитательная:

Воспитать внимательность, усидчивость, аккуратность.

3) Развивающая:

Формирование познавательного интереса к предмету;

Развить произвольное внимание, зрительную память, конструктивное мышление.

Тип урока: лекция с использованием средств мультимедийных технологий.

Учебные пособия, принадлежности и материалы: структурная схема атомной электростанции.

Для учителя – учебник; учебные таблицы и мел для работы на доске, оборудование для показа мультимедиа.

Для учащегося – учебник, тетрадь в клетку, рабочая тетрадь.

Ход урока

    Организационная часть – 2 минуты

Приветствие;

Проверка готовности к уроку;

Проверка явки учащихся.

    Сообщение темы, целей урока – 3 минуты

Обращая внимание учащихся на доску, учитель вслух проговаривает написанное и просит их тему урока записать у себя в ученическую тетрадь.

    Повторение ранее пройденного материала по теме «Получение электроэнергии» - 5 минут

С целью экономии времени на лекции закрепление изученного материала с учащимися лучше всего проводить с помощью метода фронтального опроса. Однако могут быть использованы и другие формы и методы актуализации знаний учащихся.

Учащимся предлагается ответить на вопросы:

    Способы применения электроэнергии?

    Типы генераторов?

    ЛЭП – линии электропередач;

    На каких электростанциях вырабатывается электроэнергия?

    Радиоизотопные источники энергии.

    Изучение нового материала – 25 минут

Включение мультимедиа, сделанной в MS Power Point, перед учащимися.

Атомная электростанция (АЭС) - комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции (слайд №1).

      История.

Во второй половине 40-х гг., еще до окончания работ по созданию первой атомной бомбы (ее испытание, как известно, состоялось 29 августа 1949 года), советские ученые приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика.

В 1948 г. по предложению И.В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии.

В мае 1950 года близ поселка Обнинское Калужской области начались работы по строительству первой в мире АЭС.

Первая в мире атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в СССР, в городе Обнинск, расположенном в Калужской области (слайд №2).

29 апреля 2002 г., в 11 ч. 31 м. по московскому времени был навсегда заглушен реактор первой в мире АЭС в Обнинске. Как сообщила пресс-служба Минатома России, станция была остановлена исключительно по экономическим соображениям, поскольку “поддержание ее в безопасном состоянии с каждым годом становилось все дороже и дороже”.

Первая в мире атомная электростанция с реактором АМ-1 (Атом мирный) мощностью 5 МВт дала промышленный ток 27 июня 1954 г. и открыла дорогу использованию атомной энергии в мирных целях, успешно проработав почти 48 лет.

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди дал ток потребителям. В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969. В 1973 г. запущена Ленинградская АЭС.

За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания). Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС . Энергодар (Запорожская область, Украина), строительство которой начато в 1980 г. и на середину 2008 г. работают 6 атомных реактора суммарной мощностью 5,7 ГигаВатт.

      Классификация.

        По типу реакторов.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

    Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

    Реакторы на лёгкой воде. Легководный реактор - ядерный реактор, в котором для замедления нейтронов и/или в качестве теплоносителя используется обычная вода H3O. Обычная вода, в отличие от тяжёлой воды, не только замедляет, но и в значительной степени поглощает нейтроны (по реакции 1H + n = ²D).;

    Графитовые реакторы;

    Реакторы на тяжёлой воде. Тяжеловодный ядерный реактор - ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O - тяжёлую воду. Из-за того, что дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс, что позволяет использовать в качестве топлива природный уран в энергетических реакторах или употребить «лишние» нейтроны для наработки изотопов в т. н. «промышленных»;

    Реакторы на быстрых нейтронах - ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией > 105 эВ. ;

    Субкритические реакторы, использующие внешние источники нейтронов;

    Термоядерные реакторы. Управляемый термоядерный синтез (УТС) - синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер.

        По виду отпускаемой энергии.

Атомные станции по виду отпускаемой энергии можно разделить на:

    Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

    Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию;

    Атомные станции теплоснабжения (АСТ), вырабатывающие только тепловую энергию;

    Однако на всех атомных станциях России есть теплофикационные установки, предназначенные для подогрева сетевой воды.

3.3. Основные элементы АЭС

Один из основных элементов АЭС - реактор. Во многих странах мира, используют в основном ядерные реакции расщепления урана U-235 под действием тепловых нейтронов. Для их осуществления в реакторе, кроме топлива (U-235), должен быть замедлитель нейтронов и, естественно, теплоноситель, отводящий тепло из реактора. В реакторах типа ВВЭР (водо-водяной энергетический) в качестве замедлителя и теплоносителя используется обычная вода под давлением. В реакторах типа РБМК (реактор большой мощности канальный) в качестве теплоносителя используется вода, а в качестве замедлителя - графит. Оба эти реактора находили в прежние годы широкое применение на АЭС в электроэнергетике.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

Перспективными являются АЭС с реакторами на быстрых нейтронах (БН), которые могут использоваться для получения тепла и электроэнергии, а также и для воспроизводства ядерного горючего. Технологическая схема энергоблока такой АЭС представлена на рисунке. Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из U-238, который обычно в ядерных реакциях не используется, и превращают его в плутоний Рu-239, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидким натрием и используется для выработки электроэнергии.

Принципиальная технологическая схема АЭС с реактором типа БН:

а - принцип выполнения активной зоны реактора;

б - технологическая схема:

1 - реактор; 2 – парогенератор; 3 - турбина; 4 - генератор; 5 - трансформатор; 6-конденсатор турбины; 7 - конденсатный (питательный) насос; 8 - теплообменник натриевых контуров; 9 - насос нерадиоактивного натрия; 10 - насос радиоактивного натрия (слайд №3,4).

АЭС не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков. Однако удельные тепловыделения в охлаждающую воду у АЭС больше, чем у ТЭС, вследствие большего удельного расхода пара, а, следовательно, и больших удельных расходов охлаждающей воды. Поэтому на большинстве новых АЭС предусматривается установка градирен, в которых теплота от охлаждающей воды отводится в атмосферу.

Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость захоронения радиоактивных отходов. Это делается в специальных могильниках, которые исключают возможность воздействия радиации на людей. Чтобы избежать влияния возможных радиоактивных выбросов АЭС на людей при авариях, применены специальные меры по повышению надежности оборудования (дублирование систем безопасности и др.), а вокруг станции создается санитарно-защитная зона.

3.4. Принцип действия

Схема работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР) (слайд №5).

На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель подаётся насосами в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ. Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

3.5. Достоинства и недостатки.

Достоинства атомных станций:

    Отсутствие вредных выбросов;

    Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (зола угольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);

    Небольшой объём используемого топлива и возможность его повторного использования после переработки;

    Высокая мощность: 1000-1600 МВт на энергоблок;

    Низкая себестоимость энергии, особенно тепловой.

Недостатки атомных станций:

    Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

    Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

    Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;

    Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

      Атомные станции России.

В настоящее время в Российской Федерации на 10 действующих АЭС эксплуатируется 31 энергоблок общей мощностью 23243 МВт, из них 15 реакторов с водой под давлением - 9 ВВЭР-440, 15 канальных кипящих реакторов - 11 РБМК-1000 и 4 ЭГП-6, 1 реактор на быстрых нейтронах.

В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

3.7. Проект атомной станции повышенной безопасности АЭС-92.

Проект создавался в рамках государственной программы "Экологически чистая энергетика". В нем были учтены отечественный опыт создания и эксплуатации предыдущего образца реакторной установки (В-320) на Запорожской, Балаковской, Южно-Украинской и Калининской АЭС и последние мировые достижения в области проектирования и эксплуатации АЭС. Принятые технические решения позволяют по международной классификации отнести АЭС-92 к атомным станциям III поколения. Это означает, что такая АЭС обладает наиболее совершенной технологией по обеспечению безопасности применительно к современным эволюционным реакторам легководного типа. При разработке проекта атомной электростанции проектировщики ориентировались на максимальное снижение роли человеческого фактора (слайд №6).

Реализация такой концепции осуществлялась по двум направлениям. Во-первых, в проект включены пассивные системы безопасности. Под этим термином понимаются системы, работающие практически без подвода энергии извне и не требующие вмешательства оператора. Во-вторых, была принята концепция двойного назначения активных систем безопасности, что значительно уменьшает вероятность необнаруженных отказов.

Главное достоинство проекта АЭС-92 состоит в том, что основные функции безопасности выполняются независимо друг от друга двумя различными по принципу работы системами. Наличие двойной защитной оболочки (контайнмента) в случае необходимости предотвращает выход наружу радиоактивных продуктов и обеспечивает защиту реактора от таких внешний воздействий, как взрывная волна или падение самолета. Все это в совокупности с увеличением надежности систем, снижением вероятности отказа и уменьшением роли человеческого фактора повышает уровень безопасности АЭС.

3.8. Проект плавучей атомной электростанции в Северодвинске.

Проект первой в мире плавучей атомной электростанции стартовал. Россия начала строительство ПАЭС в Северодвинске на судостроительном заводе компании "Севмаша" – единственной верфи в стране, способной выполнить такую задачу. ПАЭС будет носить имя Михаила Ломоносова. Планируется создать флотилию из семи плавучих атомных станций для обеспечения электроэнергией и пресной водой северных районов России и островных государств Тихоокеанского региона, а также еще дюжины стран, ранее проявивших интерес к идее российских атомщиков.

"Мы сегодня подписываем соглашение о строительстве серии из шести энергоблоков плавучих АЭС. Спрос на них есть не только в России, но и в Азиатско-Тихоокеанском регионе, где они могут использоваться для опреснения воды", - говорит Кириенко. Первый блок будет своего рода пилотным проектом. Он заложен на основе реактора малой мощности КЛТ40С, что, впрочем, не помешает ему обеспечить энергией весь "Севмаш" и, сверх того, удовлетворить спрос ряда зарубежных компаний. Реакторные установки поручено изготовить Опытному конструкторскому бюро машиностроения им. Африкантова, финансирование проекта на 80% осуществит Росатом, остальное берет на себя "Севмаш".

Стоимость всего проекта условно обозначается на уровне $200 млн, притом что срок окупаемости АЭС, по прогнозам экспертов, составит не более семи лет. Для того чтобы представить себе масштабы затрат, достаточно привести несколько цифр, характеризующих, скажем так, разные измерения финансового пространства, в котором реализуется проект. Итак, в 2007 г. на строительство ПАЭС будет выделено 2 миллиарда 609 миллионов рублей. Пилотный блок планируется запустить не позже чем через 3,8 года. Каждая станция сможет работать 12-15 лет без перезагрузки топлива. Услугами мобильной "подзарядки" будут не прочь попользоваться как минимум 12 стран, в той или иной степени испытывающих дефицит электроэнергии. Почти четыре года 25 тысяч человек, работающих на северодвинской верфи, будут трудиться над первой ПАЭС.

Новые сведения на эту тему:

Госкорпорация «Росатом» согласовала с правительством вопрос о переносе площадки для строительства плавучей АЭС «Академик Ломоносов» с «Севмаша» (Северодвинск, Архангельская область) на «Балтийский завод» (Санкт-Петербург), сообщает пресс-служба концерна «Росэнергоатом».

«Решение вызвано значительной загрузкой предприятия и необходимостью сосредоточения его усилий на государственном оборонном заказе», - отмечается в сообщении.

Как уточняется в пресс-релизе, у «Севмаша» будут отозваны договоры генерального подряда строительства атомной станции малой мощности и изготовления и поставки плавучего энергоблока. Весь объем незавершенного строительства и неосвоенные денежные средства возвратят заказчику - «Росэнергоатому».

Ранее сообщалось, что завершить строительство первой в РФ плавучей АЭС «Севмашпредприятие» должно было в 2010 году. Стоимость контракта составляет $200 млн. Предполагалось, что финансирование проекта на 80% осуществляется из средств «Росэнергатома», еще 20% - «Севмаш». Ввести АЭС в эксплуатацию планировалось в 2011 году.

«Балтийский завод» - крупнейшая в России судостроительная компания. «Объединенная промышленная корпорация», контролирующая завод, управляет активами общей стоимостью около 9 млрд. евро.

Судостроительный комплекс «Севмаш» является крупнейшей верфью РФ по строительству атомных подводных лодок для российского ВМФ. Однако в последние годы предприятие испытывает сложности с финансированием, что негативно влияет на выполнение имеющихся заказов. Поэтому не исключено, что решение о перепрофилировании заказа на строительство плавучей АЭС вызвано, в том числе, и ситуацией на «Севмаше» (слайд№7).

    Обобщение и закрепление знаний – 5 мин.

Изученный материал учитель может закрепить методом фронтального опроса учащихся. Для этих целей им могут быть использованы, например, такие вопросы:

    Что такое АЭС?

(Атомная электростанция (АЭС) - комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции);

    В каком году и в каком городе была запущена первая АЭС?

(В 1954 году в г. Обнинск);

    Какие существуют типы реакторов?

(Реакторы на тепловых нейтронах; на легкой воде; графитовые реакторы; реакторы на тяжелой воде; ректоры на быстрых нейтронах; субкритические реакторы; термоядерные реакторы);

    Что такое ПАЭС?

(Плавучая атомная электростанция)

    Подведение итогов урока – 5 минут

Общая характеристика учебной деятельности учащихся, сообщение учителя о достижении целей урока; выявление недостатков и пути их устранения. Напоминание дежурным об их обязанностях. Учитель благодарит учащихся за учебно-познавательную деятельность, заканчивает урок.

Список используемой литературы:

    http://ru.wikipedia.org/wiki/АЭС ;

    http://www.ippe.ru/rpr/rpr.php

    http://www.posternazakaz.ru/shop/category/570/82/

    http://slovari.yandex.ru/dict/bse/article/00005/16200.htm

    http://dic.academic.ru/dic.nsf/bse/65911/Атомная

    http://forca.ru/info/spravka/aes.html

    http://gelz.net/docs/news_every_day/plavajushhaja_ajes.html

    http://www.gubernia.ru/index.php?option=com_content&task=view&id=368

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.

Похожие статьи

© 2024 cryptodvizh.ru. Сryptodvizh - Бизнес новости.