Кем и когда был получен алюминий. §1

О.БУЛАНОВА

В нашей жизни постоянно присутствует металл. Железо, медь, золото, серебро… Есть еще одни, но на него мы как-то мало обращаем внимания, хотя у любой хозяйки в хозяйстве найдется пара кастрюлек из этого металла. Речь идет об алюминии.

Первые попытки получить алюминий начали предприниматься только в XIX в. Около 1808 г. английский химик Гемфри Дэви попытался провести электролиз глинозема и получил металл, который был назван алюмиумом или алюминумом, что в переводе с латинского означает те самые, давно известные человечеству квасцы. (Кстати, попытаться-то Дэви попытался, но подтвердить теорию практикой так и не смог.)

В 1825 г. датский физик Ханс Кристиан Эрстед впервые в мире получил алюминий из его оксида: смешал глинозем с углем, разогрел смесь и пропустил через нее хлор.

Полученный в результате хлористый алюминий подогрел с амальгамой калия (калий, растворенный в ртути) и получил амальгаму алюминия. Продистиллировав раствор, Эрстед получил несколько небольших слитков не совсем чистого алюминия. Ученый сообщил об открытии и прекратил эксперименты, потому что выяснить, что за металл был получен, тогда так и не удалось.

Его работу продолжил немецкий химик Фридрих Велер, который в 1827 г. получил около 30 гр алюминия в виде порошка, пропуская пары хлористого алюминия над металлическим калием. Ему понадобилось еще 18 лет непрерывных опытов, чтобы в 1845 г. получить небольшие шарики застывшего расплавленного алюминия (корольки).

Но эти способы не могли быть применены в промышленности, потому что использовали очень дорогой калий. Приходилось искать другие пути.

В 1855 г. на всемирной Парижской выставке французский химик и технолог Сен- Клер Девилль демонстрировал первый алюминий, полученные путем нагревание хлористого алюминия с натрием.

Он усовершенствовал метод Велера и уже в 1856 г. открылось первое предприятие алюминиевой промышленности – завод братьев Шарля и Александра Тисье в Руане. Химическим способом Девиля в 1855-1890 гг. было получено 200 т алюминия.

Из-за трудностей, связанных с выделением алюминия из соединений он долго был очень дорогим металлом, и вплоть до начала XX в. его стоимость была выше стоимости золота. Поэтому долгие годы первый алюминий использовался как музейный экспонат.

Из первого алюминия изготавливали ювелирные украшения, статуэтки, медали и пр. Первыми считаются медали с барельефами Наполеона III, который всячески поддерживал развитие производства алюминия, и Фридриха Велера, а также погремушка наследного принца Луи-Наполеона из алюминия и золота.

Кстати, алюминиевыми приборами укомплектовывались в советское время школьные и производственные столовые, точки общепита и т.п. Эти приборы были более чем дешевы: украдут их посетители, сломают (а ломается алюминий очень легко), потеряют – так не жалко.

Но вернемся в историю – в годы первых ювелирных украшений из алюминия. Над алюминием тряслись, однако уже тогда Девиль понимал, что будущее алюминия связано отнюдь не с ювелирным делом.

Он писал: “Нет ничего труднее, чем заставить людей использовать новый металл. Предметы роскоши и украшения не могут служить единственной областью его применения. Я надеюсь, что настанет время, когда алюминий будет служить удовлетворению повседневных нужд”.

Получение алюминия из глин интересовало не только ученых-химиков, но и промышленников. Поэтому ученые трудились, не покладая рук. Ситуация изменилась с открытием более дешевого электролитического способа производства алюминия в 1886 г.

Его одновременно и независимо друг от друга разработали французский инженер Поль Эру и американский студент Чарльз Холл.

Проводя исследования, Холл в расплаве криолита растворил оксид алюминия. Полученную смесь поместил в гранитный сосуд и пропустил через нее постоянный электрический ток. Он был очень удивлен, когда через некоторое время на дне сосуда обнаружил бляшки чистого алюминия. Предложенный метод позволял получать металл в больших количествах, но требовал большого количества электроэнергии.

Однако очень может быть, что все эти открытия, позволяющие получать чистый алюминий из соединений, это то самое новое, которое хорошо забытое старое.

Потому что еще в “Естественной истории” римского ученого Плиния Старшего говорится о легенде I в., в которой мастер дарит императору Тиберию чашу из неизвестного металла – похожую на серебряную, но при этом очень легкую. Что, если это была чаша из алюминия?

Дорогая, ценная – судя по тому, что это был подарок императору: властителям дешевого не дарят.

Но перенесемся вновь во времена Холла и Эру, когда метод был найден, но большие энергозатраты требовали придумать что-то еще. Поэтому свое первое производство Эру организовал на металлургическом заводе в Нейгаузене (Швейцария), рядом со знаменитым Рейнским водопадом, сила падающей воды которого приводила в действие динамо-машины предприятия.

И вот 18 ноября 1888 г. между Швейцарским металлургическим обществом и немецким промышленником Ратенау было подписано соглашение об учреждении в Нейгаузене АО Алюминиевой промышленности с общим капиталом в 10 млн швейцарских франков.

Позднее его переименовали в Общество алюминиевых заводов. На его торговой марке было изображено солнце, восходящее из-за алюминиевого слитка, что должно было, по замыслу Ратенау, символизировать зарождение алюминиевой промышленности. За 5 лет производительность завода возросла более чем в 10 раз: если в 1890 г. в Нейгаузене было выплавлено всего 40 т алюминия, то в 1895 г. – 450 т.

Холл же, воспользовавшись поддержкой друзей, организовал Питтсбургскую восстановительную компанию, которая запустила свой первый завод в Кенсингтоне неподалеку от Питтсбурга 18 сентября 1888 г.

В первые месяцы он выпускал лишь около 20-25 кг алюминия в сутки, а в 1890 г. – уже по 240 кг ежедневно. (В 1907 г. Питтсбургская восстановительная компания была реорганизована в Американскую алюминиевую компанию – “Alcoa”.)

Свои новые заводы компания расположила в штате Нью-Йорк вблизи новой Ниагарской ГЭС.

В 1889 г. технологичный и дешевый метод производства глинозема – оксида алюминия, основного сырья для производства металла – изобрел австрийский химик Карл Иосиф Байер, работая в Санкт-Петербурге на Тентелевском заводе.

В одном из экспериментов ученый добавил в щелочной раствор боксит и нагрел в закрытом сосуде – боксит растворился, но не полностью. В не растворившемся остатке Байер не обнаружил алюминия – оказалось, что при обработке щелочным раствором весь алюминий, содержащийся в боксите, переходит в раствор.

Таким образом, за несколько десятилетий была создана алюминиевая промышленность, завершилась история о “серебре из глины” и алюминий стал новым промышленным металлом.

На рубеже XIX и XX вв. алюминий стал применяться в самых разных сферах и дал толчок для развития целых отраслей. В 1891 г. по заказу Альфреда Нобеля в Швейцарии создается первый пассажирский катер “Le Migron” с алюминиевым корпусом.

В 1894 г. шотландская судостроительная верфь “Yarrow & Co” представила изготовленную из алюминия 58-метровую торпедную лодку. Этот катер назывался “Сокол”, был сделан для военно-морского флота Российской империи и развивал рекордную для того времени скорость в 32 узла.

В том же году американская железнодорожная компания “New York, New Haven, and Hartford Railroad”, принадлежавшая банкиру Джону Пирпонту Моргану, начала выпускать специальные легкие пассажирские вагоны с сиденьями из алюминия. А всего через 5 лет на выставке в Берлине Карл Бенц представил первый спортивный автомобиль с алюминиевым корпусом.

На площади Пиккадили в Лондоне в 1893 г. появилась алюминиевая статуя древнегреческого бога Антероса. Высотой почти в 2,5 м, она стала первой крупной работой из этого металла в сфере искусства – а ведь совсем недавно каминные часы или статуэтки считались роскошью, доступной только высшему обществу.

Но настоящую революцию алюминий совершил в авиации, за что навсегда заслужил свое второе имя – “крылатый металл”. В этот период изобретатели и авиаторы во всем мире работали над созданием самолетов.

Алюминий всем был хорош – кроме прочности, которая была необходима для промышленности. Но и эта проблема была решена. Немецкий химик Альфред Вильм сплавил алюминий с другими металлами: медью, марганцем и магнием.

Получился сплав, который был значительно прочнее алюминия. На его получение ушло семь лет. В промышленных масштабах такой сплав был получен в немецком местечке Дюрене в 1911 г. Этот сплав был назван дюралюминием, в честь городка.

Первым из дюралюминия был сделан фюзеляж первого цельнометаллического самолета в мире Junkers J1, разработанного в 1915 г. одним из основателей мирового авиастроения, знаменитым немецким авиаконструктором Хуго Юнкерсом.

Получение алюмокалиевых квасцов

Алюминий (лат. Aluminium), – в периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 1 . Металлический атомный радиус 0,143 нм, ковалентный – 0,126 нм, условный радиус иона Al 3+ – 0,057 нм. Энергия ионизации Al – Al + 5,99 эВ.

Наиболее характерная степень окисления атома алюминия +3. Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl 4- , AlH 4- , алюмосиликаты), но и 6 (Al 2 O 3 , 3+).

Историческая справка . Название Алюминий происходит от лат. alumen – так еще за 500 лет до н.э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленного способ производства Алюминия предложил в 1854 французский химик А.Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Нахождение в природе

Алюминий – самый распространенный в земной коре металл. На его долю приходится 5,5–6,6 мол. доли% или 8 масс.%. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al 2 O 3 . 2SiO 2 . 2H 2 O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al 2 O 3 . xH 2 O и минералы корунд Al 2 O 3 и криолит AlF 3 . 3NaF.

Получение

В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al 2 O 3 в расплавленнном криолите. Al 2 O 3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al 2 O 3 около 2050 о С, а криолита – 1100 о С. Электролизу подвергают расплавленную смесь криолита и Al 2 O 3 , содержащую около 10 масс.% Al 2 O 3 , которая плавится при 960 о С и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF 3 , CaF 2 и MgF 2 проведение электролиза оказывается возможным при 950 о С.

Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды располагаются сверху: это – алюминиевые каркасы, заполненные угольными брикетами.

Al 2 O 3 = Al 3+ + AlO 3 3-

На катоде выделяется жидкий алюминий:

Al 3+ + 3е - = Al

Алюминий собирается на дне печи, откуда периодически выпускается. На аноде выделяется кислород:

4AlO 3 3- – 12е - = 2Al 2 O 3 + 3O 2

Кислород окисляет графит до оксидов углерода. По мере сгорания углерода анод наращивают.

Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.

Физические свойства алюминия . Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20 °С) 2698,9 кг/м 3 ; t пл 660,24 °С; t кип около 2500 °С; коэффициент термического расширения (от 20° до 100 °С) 23,86·10 -6 ; теплопроводность (при 190 °С) 343 вт/м·К , удельная теплоемкость (при 100 °С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50–60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость – до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом – при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:

Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты – соли, содержащие алюминий в составе аниона:

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na

Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH) 3 + NaOH = Na

Суммарное уравнение растворения алюминия в водном растворе щелочи:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na 2 CO 3 .

В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.

Соединение алюминия с кислородом сопровождается громадным выделением тепла (1676 кДж/моль Al 2 O 3), значительно большим, чем у многих других металлов. В виду этого при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и др.) в свободном состоянии.

Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь («термит») состоит обычно из тонких порошков алюминия и Fe 3 O 4 . Поджигается она при помощи запала из смеси Al и BaO 2 . Основная реакция идет по уравнению:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe + 3350 кДж

Причем развивается температура около 3000 о С.

Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050 о С) и нерастворимую в воде массу. Природный Al 2 O 3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al 2 O 3 (т. н. глинозем) можно перевести сплавлением со щелочами.

Обычно загрязненный оксидом железа природный корунд вследствие своей чрезвычайной твердости применяется для изготовления шлифовальных кругов, брусков и т.д. В мелко раздробленном виде он под названием наждака служит для очистки металлических поверхностей и изготовления наждачной бумаги. Для тех же целей часто пользуются Al 2 O 3 , получаемым сплавлением боксита (техническое название – алунд).

Прозрачные окрашеннные кристаллы корунда – красный рубин – примесь хрома – и синий сапфир – примесь титана и железа – драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr 2 O 3 , применяют в качестве квантовых генераторов – лазеров, создающих направленный пучок монохроматического излучения.

Ввиду нерастворимости Al 2 O 3 в воде отвечающий этому оксиду гидроксид Al(OH) 3 может быть получен лишь косвенным путем из солей. Получение гидроксида можно представить в виде следующей схемы. При действии щелочей ионами OH – постепенно замещаются в аквокомплексах 3+ молекулы воды:

3+ + OH - = 2+ + H 2 O

2+ + OH - = + + H 2 O

OH - = 0 + H 2 O

Al(OH) 3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH 4 OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида – алюмогель используется в технике в качестве адсорбента.

При взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + Al(OH) 3 = Na

Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al 2 O 3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO 2 . Большинство из них в воде нерастворимо.

С кислотами Al(OH) 3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.

В водной среде анион Al 3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме:

3+ + H 2 O = 2+ + OH 3 +

Константа его диссоциации равна 1 . 10 -5 , т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al 3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия.

Алюмосиликаты можно рассматривать как силикаты, в которых часть кремниекислородных тетраэдров SiO 4 4 – заменена на алюмокислородные тетраэдры AlO 4 5- Из алюмосиликатов наиболее распространены полевые шпаты, на долю которых приходится более половины массы земной коры. Главные их представители – минералы

ортоклаз K 2 Al 2 Si 6 O 16 или K 2 O . Al 2 O 3 . 6SiO 2

альбит Na 2 Al 2 Si 6 O 16 или Na 2 O . Al 2 O 3 . 6SiO 2

анортит CaAl 2 Si 2 O 8 или CaO . Al 2 O 3 . 2SiO 2

Очень распространены минералы группы слюд, например мусковит Kal 2 (AlSi 3 O 10) (OH) 2 . Большое практическое значение имеет минерал нефелин (Na, K) 2 , который используется для получения глинозема содовых продуктов и цемента. Это производство складывается из следующих операций: a) нефелин и известняк спекают в трубчатых печах при 1200 о С:

(Na, K) 2 + 2CaCO 3 = 2CaSiO 3 + NaAlO 2 + KAlO 2 + 2CO 2

б) образовавшуюся массу выщелачивают водой – образуется раствор алюминатов натрия и калия и шлам CaSiO 3:

NaAlO 2 + KAlO 2 + 4H 2 O = Na + K

в) через раствор алюминатов пропускают образовавшийся при спекании CO 2:

Na + K + 2CO 2 = NaHCO 3 + KHCO 3 + 2Al(OH) 3

г) нагреванием Al(OH) 3 получают глинозем:

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

д) выпариванием маточного раствора выделяют соду и потаж, а ранее полученный шлам идет на производство цемента.

При производстве 1 т Al 2 O 3 получают 1 т содопродуктов и 7.5 т цемента.

Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты – природные и особенно искусственные – применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором.

Галогениды алюминия в обычных условиях – бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF 3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF 3 основан на действии безводного HF на Al 2 O 3 или Al:

Al 2 O 3 + 6HF = 2AlF 3 + 3H 2 O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl 3 , AlBr 3 и AlI 3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

Плотности паров AlCl 3 , AlBr 3 и AlI 3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам – Al 2 Hal 6 . Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена – с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора.

С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M 3 и M (где Hal – хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl 3 в качестве катализатора (при переработке нефти и при органических синтезах).

Из фторалюминатов наибольшее применение (для получения Al, F 2 , эмалей, стекла и пр.) имеет криолит Na 3 . Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:

2Al(OH) 3 + 12HF + 3Na 2 CO 3 = 2Na 3 + 3CO 2 + 9H 2 O

Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов.

Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH 3) n . Разлагается при нагревании выше 105 о С с выделением водорода.

При взаимодействии AlH 3 с основными гидридами в эфирном растворе образуются гидроалюминаты:

LiH + AlH 3 = Li

Гидридоалюминаты – белые твердые вещества. Бурно разлагаются водой. Они – сильные восстановители. Применяются (в особенности Li) в органическом синтезе.

Сульфат алюминия Al 2 (SO 4) 3 . 18H 2 O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

Алюмокалиевые квасцы KAl(SO 4) 2 . 12H 2 O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

Из остальных производных алюминия следует упомянуть его ацетат (иначе – уксуснокислую соль) Al(CH 3 COO) 3 , используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.

Алюминий в организме . Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения – от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание алюминия достигает 35–40 мг. Известны организмы – концентраторы алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% алюминия, моллюски (Helix и Lithorina), в золе которых 0,2–0,8% алюминия. Образуя нерастворимые соединения с фосфатами, алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

Геохимия алюминия . Геохимические черты алюминия определяются его большим сродством к кислороду (в минералах алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов – алюмосиликатов. В биосфере алюминий – слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь алюминия с кремнием частично нарушается и местами в тропиках образуются минералы – гидрооксиды алюминия – бемит, диаспор, гидраргиллит. Большая же часть алюминия входит в состав алюмосиликатов – каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, алюминий почти не мигрирует. Наиболее энергична миграция алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые алюминием. В местах смещения кислых вод с щелочными – морскими (в устьях рек и других), алюминий осаждается с образованием бокситовых месторождений.

Применение Алюминия . Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V , применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т.д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

В металлургии Алюминий (помимо сплавов на его основе) – одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300 °С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Список использованной литературы

1. В.А. Рабинович, З.Я. Хавин «Краткий химический справочник»

2. Л.С. Гузей «Лекции по общей химии»

3. Н.С. Ахметов «Общая и неорганическая химия»

4. Б.В. Некрасов «Учебник общей химии»

5. Н.Л. Глинка «Общая химия»

Название «алюминий» произошло от «алюмиум» — вещество, открытое английским ученым-химиком Хэмфри Дэви в 1807 году. Корень слова «алюм» обозначает «квасцы», представляющие собой соль алюминия.

Попытки Хэмфри выделить открытый им металл в чистом виде не увенчались успехом, и только в 1825 году другой ученый, датчанин Ханс Кристиан Эрстед, смог получить алюминий без примесей.

Спустя еще 20 лет немецким ученым Фридрихом Вехлером были проведены первые глубокие исследования свойств алюминия. Своей целью Вехлер ставил открыть секрет легкости этого металла.

Многие из ученых того времени пытались решить проблему выделения этого металла, предлагались различные способы, но все они имели свои изъяны. Так, в середине 50-х годов XIX века француз Анри Сент-Клер Девиль, научился получать алюминий, используя натрий, однако на выходе получалось всего несколько килограммов легкого металла. В результате, этот способ практически не использовался в промышленном производстве, но получил широкое распространение у ученых, что позволило им ставить больше опытов по изучению характеристик алюминия.

История получения алюминия путем плавления началась в конце XIX века. Этот способ был открыт в 1886 году одновременно двумя разными учеными: американцем Чарльзом Холлом и французом Полем Эру. Интересен тот факт, что они не только в один год изобрели метод Холла-Эру, как впоследствии его назвали, но и их даты рождения и смерти тоже совпадают (1863-1914 гг.).

Спустя 2 года австриец Карл Вайер модернизировал метод Холла-Эру, взяв в качестве исходного материала для производства алюминия не его оксид, а бокситы. Это привело к падению цен на алюминий на 80 % и его широкому распространению в промышленности.

Алюминий стали использовать практически везде: от бытовой сферы до производства оружия. Его упоминал в своих произведениях всемирно известный писатель Жюль Верн. Там герои строили из алюминия ракеты и корабли.

Также способствовало развитию применения алюминия и изобретение многослойной фанеры, резины и, конечно же, пластмассы. Все эти материалы активно интегрировались с алюминием при производстве сложных устройств и механизмов. О динамике развития производства алюминия говорит тот факт, что за сто с лишним лет, с конца XIX по XXI век, производство алюминия увеличилось в 110 тысяч раз и в 2010 году составило 40 млн. тонн.

ИСТОРИЯ АЛЮМИНИЯ

Алюминий – один из самых молодых металлов, открытых человеком. В чистом виде в природе он не встречается, поэтому получить его удалось лишь в XIX веке, благодаря развитию химии и появлению электричества. За полтора века алюминий прошел невероятно интересный путь от драгоценного металла до материала, использующегося абсолютно в каждой
сфере деятельности людей.

« Вы думаете, всё так просто? Да, всё просто.
Но совсем не так».

Альберт Эйнштейн
Физик-теоретик

Открытие алюминия


В элементах орнамента гробниц китайских императоров III века н.э. использован алюминиевый сплав, содержащий алюминий, медь и марганец

Человечество сталкивалось с алюминием задолго до того, как этот металл был получен. В «Естественной истории» римского ученого Плиния Старшего говорится о легенде I века, в которой мастер дарит императору Тиберию чашу из неизвестного металла – похожую на серебряную, но при этом очень легкую .

Достаточно широко в древности применялись квасцы – соль на основе алюминия. Полководец Архелай обнаружил, что дерево практически не горит, если его выдержать в растворе квасцов – этим пользовались для защиты деревянных укреплений от поджогов. В античные времена квасцы применялись в медицине, при выделке кож, в качестве протравы при крашении тканей. В Европе, начиная с XVI века квасцы использовались повсеместно: в кожевенной промышленности в качестве дубильного средства, в целлюлозно-бумажной – для проклеивания бумаги, в медицине – в дерматологии, косметологии, стоматологии и офтальмологии.

Именно квасцам (по-латински – alumen) алюминий обязан своим именем. Его металлу дал английский химик Гемфри Дэви, который в 1808 году установил, что получить алюминий можно методом электролиза из глинозема (оксид алюминия), но подтвердить теорию практикой он не смог.

Ханс Кристиан Эрстед

1777 - 1851

Это сделал датчанин Ханс Кристиан Эрстед в 1825 году. Правда, судя по всему, ему удалось получить не чистый металл, а некий сплав алюминия с элементами, участвовавшими в опытах. Ученый сообщил об открытии и прекратил эксперименты.

Его работу продолжил немецкий химик Фридрих Вёлер, который 22 октября 1827 года получил около 30 граммов алюминия в виде порошка. Ему понадобилось еще 18 лет непрерывных опытов, чтобы в 1845 году получить небольшие шарики застывшего расплавленного алюминия (корольки).


Открытие алюминиевой руды. В 1821 году геолог Пьер Бертье обнаружил во Франции залежи глинистой красноватой по роды. Свое название «боксит» (bauxite) порода получила по наименованию местности, где была найдена – Les Baux.


Открытый учеными химический метод получения алюминия довел до промышленного применения выдающийся французский химик и технолог Анри-Этьенн Сент-Клер Девиль. Он усовершенствовал метод Вёлера и в 1856 году совместно со своими партнерами организовал первое промышленное производство алюминия на заводе братьев Шарля и Александра Тиссье в Руане (Франция).

200 тонн

алюминия было получено химическим способом Сент-Клер Девиля в период с 1855 по 1890 годы

Получаемый металл был похож на серебро, был легким и при этом дорогим, поэтому в то время алюминий считался элитным материалом, предназначенным для изготовления украшений и предметов роскоши. Первыми продуктами из алюминия считаются медали с барельефами Наполеона III, который всячески поддерживал развитие производства алюминия, и Фридриха Вёлера, а также погремушка наследного принца Луи-Наполеона, выполненная из алюминия и золота.

Однако уже тогда Сент-Клер Девиль понимал, что будущее алюминия связано отнюдь не с ювелирным делом.

«Нет ничего труднее, чем заставить людей использовать новый металл. Предметы роскоши и украшения не могут служить единственной областью его применения. Я надеюсь, что настанет время, когда алюминий будет служить удовлетворению повседневных нужд».

Сент-Клер Девиль
Французский химик

Метод Холла-Эру

Ситуация изменилась с открытием более дешевого электролитического способа производства алюминия в 1886 году. Его одновременно и независимо друг от друга разработали французский инженер Поль Эру и американский студент Чарльз Холл. Предложенный ими метод подразумевал электролиз расплавленной в криолите окиси алюминия и давал прекрасные результаты, но требовал большого количества электроэнергии.



Чарльз Холл

Поэтому свое первое производство Эру организовал на металлургическом заводе в Нейгаузене (Швейцария), рядом со знаменитым Рейнским водопадом, сила падающей воды которого приводила в действие динамо-машины предприятия.

18 ноября 1888 года, между Швейцарским металлургическим обществом и немецким
промышленником Ратенау было подписано соглашение об учреждении в Нейгаузене Акционерного общества алюминиевой промышленности с общим капиталом в 10 миллионов швейцарских франков. Позднее его переименовали в Общество алюминиевых заводов. На его торговой марке было изображено солнце, восходящее из-за алюминиевого слитка, что должно было, по замыслу Ратенау, символизировать зарождение алюминиевой промышленности. За пять лет производительность завода возросла более чем в 10 раз. Если в 1890 году в Нейгаузене было выплавлено всего 40 тонн алюминия, то в 1895 году – 450 тонн.


Чарльз Холл, воспользовавшись поддержкой друзей, организовал Питтсбургскую восстановительную компанию, которая запустила свой первый завод в Кенсингтоне неподалеку от Питтсбурга 18 сентября 1888 года. В первые месяцы он выпускал лишь около 20-25 кг алюминия в сутки, а в 1890 – уже по 240 кг ежедневно.

Свои новые заводы компания расположила в штате Нью-Йорк вблизи новой Ниагарской гидроэлектростанции. Алюминиевые заводы и в наше время строятся в непосредственной близости от мощных, дешевых и экологичных источников энергии, таких как ГЭС. В 1907 году Питтсбургская восстановительная компания была реорганизована в Американскую алюминиевую компанию или сокращенно Alcoa.

В 1889 году технологичный и дешевый метод производства глинозема – оксида алюминия, основного сырья для производства металла – изобрел австрийский химик Карл Иосиф Байер, работая в Санкт-Петербурге (Россия) на Тентелевском заводе. В одном из экспериментов ученый добавил в щелочной раствор боксит и нагрел в закрытом сосуде – боксит растворился, но не полностью. В нерастворившемся остатке Байер не обнаружил алюминия – оказалось, что при обработке щелочным раствором весь алюминий, содержащийся в боксите, переходит в раствор.

На основе методов Байера и Холла-Эру основаны современные технологии получения алюминия.

Таким образом, за несколько десятилетий была создана алюминиевая промышленность, завершилась история о «серебре из глины» и алюминий стал новым промышленным металлом.

Широкое применение


На рубеже XIX и XX веков алюминий стал применяться в самых разных сферах и дал толчок для развития целых отраслей.

В 1891 году по заказу Альфреда Нобеля в Швейцарии создается первый пассажирский катер Le Migron с алюминиевым корпусом. А через три года шотландская судостроительная верфь Yarrow & Co представила изготовленную из алюминия 58-метровую торпедную лодку. Этот катер назывался «Сокол», был сделан для военно-морского флота Российской империи и развивал рекордную для того времени скорость в 32 узла.

В 1894 году американская железнодорожная компания New York, New Haven, and Hartford Railroad, принадлежавшая тогда банкиру Джону Пирпонту Моргану (J.P. Morgan), начала выпускать специальные легкие пассажирские вагоны, сидения которых были выполнены из алюминия. А всего через 5 лет на выставке в Берлине Карл Бенц представил первый спортивный автомобиль с алюминиевым корпусом.

На площади Пиккадили в Лондоне в 1893 году появилась алюминиевая статуя древнегреческого бога Антероса. Высотой почти в два с половиной метра она стала первой крупной работой из этого металла в сфере искусства – а ведь всего несколько десятков лет назад каминные часы или статуэтки в кабинетах считались роскошью, доступной только высшему обществу.



Но настоящую революцию алюминий совершил в авиации, за что навсегда заслужил свое второе имя – «крылатый металл». В этот период изобретатели и авиаторы во всем мире работали над созданием управляемых летательных аппаратов – самолетов.

17 декабря 1903 года американские авиаконструкторы братья Уилбур и Орвилл Райт впервые в истории человечества совершили полет на управляемом летательном аппарате «Флайер-1». Для того чтобы заставить его полететь они попытались использовать автомобильный двигатель, однако он оказался слишком тяжелым. Поэтому специально для «Флайера-1» разработали полностью новый двигатель, детали которого были изготовлены из алюминия. Легкий 13-сильный мотор поднял первый в мире самолет с Орвиллом Райтом за штурвалом в воздух на 12 секунд, за которые он пролетел 36,5 метров. Братья совершили еще два полета по 52 и 60 метров на высоте около 3 метров от уровня земли.

В 1909 году был изобретен один из ключевых алюминиевых сплавов – дюралюминий. На его получение у немецкого ученого Альфреда Вильма ушло семь лет, но они того стоили. Сплав с добавлением меди, магния и марганца был таким же легким, как алюминий, но при этом значительно превосходил его по твердости, прочности и упругости. Дюралюминий быстро стал главным авиационным материалом. Из него был сделан фюзеляж первого цельнометаллического самолета в мире Junkers J1, разработанного в 1915 году одним из основателей мирового авиастроения, знаменитым немецким авиаконструктором Хуго Юнкерсом.


Мир входил в этап войн, в которых авиация стала играть стратегическую, а иногда решающую роль. Поэтому дюралюминий первое время являлся военной технологией и метод его получения держался в секрете.

Тем временем, алюминий осваивал новые и новые сферы применения. Из него начали массово производить посуду, которая быстро и почти полностью вытеснила медную и чугунную утварь. Алюминиевые сковородки и кастрюли легкие, быстро нагреваются и остывают, а также не ржавеют.


В 1907 году в Швейцарии Роберт Виктор Неер изобретает способ получения алюминиевой фольги методом непрерывной прокатки алюминия. В 1910 году он уже запускает первый в мире фольгопрокатный завод. А еще через год компания Tobler использует фольгу для упаковки шоколада. В нее, в том числе, заворачивают и знаменитый треугольный Toblerone.


Очередной переломный момент для алюминиевой промышленности наступает в 1920 году, когда группа ученых под руководством норвежца Карла Вильгельма Содерберга изобретает новую технологию производства алюминия, которая существенно удешевляла метод Холла-Эру. До этого в качестве анодов в процессе электролиза использовались предварительно обожженные угольные блоки – они быстро расходовались, поэтому постоянно требовалась установка новых. Содерберг решил эту проблему с помощью постоянно возобновляемого электрода. Он формируется в специальной восстановительной камере из коксосмоляной пасты и по мере необходимости добавляется в верхнее отверстие электролизной ванны.

Технология Содерберга быстро распространяется по всему миру и приводит к увеличению объемов его выпуска. Именно ее берет на вооружение СССР, не имевший тогда собственной алюминиевой промышленности. В дальнейшем развитие технологий вновь сделало применение электролизеров с обожженными анодами предпочтительнее из-за отсутствия на них выбросов смолистых веществ и меньшего расхода электроэнергии. Кроме того, одним из основных достоинств электролизеров с обожженными анодами является возможность увеличения силы тока, то есть производительности.

Еще в 1914 российский химик Николай Пушин писал: «Россия, потребляющая ежегодно 80 000 пудов алюминия, сама не производит ни одного грамма этого металла, и весь алюминий покупает за границей».

В 1920 году, несмотря на продолжающуюся гражданскую войну, руководство страны понимает, что для промышленного роста и индустриализации огромной территории необходимы колоссальные объемы электроэнергии. Для этого был разработана и принята программа, получившая название «План ГОЭЛРО» (ГОсударственной комиссии по ЭЛектрификации РОссии). Он подразумевал строительство на российских реках каскадов ГЭС, а чтобы для вырабатываемой ими энергии сразу был потребитель, рядом было решено строить алюминиевые заводы. При этом алюминий использовался как для военных, так и гражданских нужд.

Первая Волховская ГЭС была запущена в 1926 году в Ленинградской области, рядом с ней возводят Волховский алюминиевый завод, который дал свой первый металл в 1932 году. К началу Второй мировой войны в стране было уже два алюминиевых и один глиноземный завод, еще два алюминиевых предприятия были построены в течение войны.

В это время алюминий активно использовался в авиации, судостроении и автомобилестроении, а также начинал свой путь в строительстве. В США в 1931 году был построен знаменитый небоскреб Empire State Building, вплоть до 1970 года, являвшийся самым высоким зданием в мире. Это было первое здание, при строительстве которого широко использовался алюминий, как в основных конструкциях, так и в интерьере.

Вторая мировая война видоизменила основные рынки спроса на алюминий – на первый план выходит авиация, изготовление танковых и автомобильных моторов. Война подтолкнула страны антигитлеровской коалиции к увеличению объема алюминиевых мощностей, совершенствовалась конструкция самолетов, а вместе с ними и виды новых алюминиевых сплавов. «Дайте мне 30 тысяч тонн алюминия, и я выиграю войну», - писал в 1941 году президенту США Франклину Рузвельту глава СССР Иосиф Сталин. С окончанием войны заводы переориентировались на гражданскую продукцию.


В середине XX века человек шагнул в космос. Чтобы сделать это вновь понадобился алюминий, для которого аэрокосмическая отрасль с тех пор стала одной из ключевых сфер применения. В 1957 году СССР вывел на орбиту Земли первый в истории человечества искусственный спутник – его корпус состоял из двух алюминиевых полусфер. Все последующие космические аппараты изготавливались из крылатого металла.

В 1958 году в США появился алюминиевый продукт, ставший впоследствии одним из самых массовых товаров из алюминия, символом экологичности этого металла и даже культовым предметом в области искусства и дизайна. Это алюминиевая банка. Ее изобретение делят между собой алюминиевая компания Kaiser Aluminum и пивоваренная Coors. К слову, последняя не только первой стала продавать пиво в алюминиевых банках, но и организовала систему сбора и переработки использованных банок. В 1967 году разливать свои напитки в алюминиевые банки начинают Coca-Cola и Pepsi.


В 1962 году легендарный гонщик Микки Томпсон и его гоночный болид Harvey Aluminium Special Indianapolis 500 car, выполненный из алюминиевых сплавов, стали сенсацией. Несмотря на то, что машина уступала конкурентам по мощности на целых 70 лошадиных сил, Томпсону удалось занять восьмое место в квалификации и быть девятым по ходу гонок. В результате его команда получила награду Mechanical Achievement Award за прорыв в дизайне гоночных болидов.

Спустя два года в Японии был запущен знаменитый Shinkansen - первый в мире высокоскоростной поезд, прообраз всех современных поездов такого типа, в которых алюминий является ключевым материалом. Он курсировал между Токио и Осакой и преодолевал расстояние в 515 км за 3 часа 10 минут, разгоняясь до 210 км/ч.

Соединения алюминия были известны человеку с древних времён. Одними из них являлись вяжущие вещества, к которым относятся алюмо-калиевые квасцы КAl(SO4)2. Они находили широкое применение. Они использовались в качестве протравы и как средство, останавливающее кровь. Пропитка древесины раствором алюмокалиевых квасцов делало её негорючей. Известен интересный исторический факт, как Архелай- полководец из Рима во время войны с персами приказал намазать башни, которые служили в качестве оборонительных сооружений, квасцами. Персам так и не удалось сжечь их.

Еще одним из соединений алюминия были природные глины, в состав которых входит оксид алюминия Al2O3.

Первые попытки получить алюминий только в середине XIX века. Попытка предпринятая датским учёным Х.К.Эрстедом увенчалась успехом. Для получения он использовал амальгированный калий в качестве восстановителя алюминия из оксида. Но что за металл был получен тогда выяснить так и не удалось. Через некоторое время, через два года, алюминий был получен немецким ученым-химиком Велером, который получил алюминий, используя нагревание безводного хлорида алюминия с металлическим калием. Многие годы труда немецкого ученого не прошли даром. За 20 лет он сумел приготовить гранулированный металл. Он оказался похожим на серебро, но был значительно легче его. Алюминий был очень дорогим металлом, и вплоть до начала XX века, его стоимость была выше стоимости золота. Поэтому многие-многие годы алюминий использовался как музейный экспонат. Около 1807 г. Дэви попытался провести электролиз глинозема, получил металл, который был назван алюмиумом (Alumium) или алюминумом (Aluminum), что в переводе с латинского - квасцы.

Получение алюминия из глин интересовало не только ученых-химиков, но и промышленников. Алюминий очень тяжело было отделить от других веществ, это способствовало тому, что он был дороже золота. В 1886 году химиком Ч.М. Холлом был предложен способ, который позволил получать металл в больших количествах. Проводя исследования, он в расплаве криолита AlF3 nNaF растворил оксид алюминия. Полученную смесь поместил в гранитный сосуд и пропустил через расплав постоянный электрический ток. Он был очень удивлен, когда через некоторое время на дне сосуда он обнаружил бляшки чистого алюминия. Этот способ и в настоящее время является основным для производства алюминия в промышленных масштабах. Полученный металл всем был хорош, кроме прочности, которая была необходима для промышленности. И эта проблема была решена. Немецкий химик Альфред Вильм сплавил алюминий с другими металлами: медью, марганцем и магнием. Получился сплав, который был значительно прочнее алюминия.

§2. Способы получения

Изобретение относится к способу получения алюминия путем электролитического выделения его из водных растворов одновременно с водородом. В способе используют жидкометаллический катод, например галлиевый. Содержание алюминия в металле повышают до 6 мас.%, выводят сплав из электролизера, охлаждают его в диапазоне от 98 до 26°С и выделяют алюминий кристаллизацией, получая первичный насыщенный твердый раствор с содержанием алюминия около 80 мас.%. Маточный раствор-сплав эвтектического состава возвращают на электролиз в качестве катодного металла, а первичный твердый раствор расплавляют и подвергают перекристаллизации при температурах ниже 660°С, отделяя последовательно вторичный, третичный и т.д. твердые растворы от жидкости до получения из них алюминия технической чистоты.

Альтернативные методы производства алюминия - карботермический процесс, процесс Тодта, процесс Кувахара электролиз хлоридов, восстановление алюминия натрием - не обнаружили преимуществ перед методом Эру-Холла.

Прототипом настоящего изобретения является наше предыдущее предложение того же названия, под N Получение алюминия из водных растворов одновременно с водородом, составляющее сущность этого изобретения, исключительно заманчиво, но его не удается реализовать из-за процессов пассивирования твердого алюминиевого катода оксидно-гидроксидными пленками переменного состава. Наши попытки реализации процесса в щелочеалюминатных, сернокислых, солянокислых и азотнокислых растворах в равной мере оказались безуспешными.

В связи с этим мы предлагаем получать алюминий и водород на проточном жидкометаллическом катоде, на пример, на галлиевом или состоящем из сплава галлия с алюминием. Могут применяться при этом и другие легкоплавкие сплавы. Катода. В результате электролиз осуществляется легко и, в первом приближении, просто с гарантированным выделением алюминия в катодный сплав.

В промышленности алюминий получают электролизом Al2O3 в расплаве криолита Na3 при температуре 950

2Al2O3 = 4Al(3+) + 6O(2-) = 2Al + 3O2

Основные реакции процессов:

CaF2 + H2SO4 → 2HF + CaSO4 (15.з)

SiO2 + 6HF →H2SiF6 + 2H2

HF и H2SiF6 - газообразные продукты, улавливаемые водой. Для обескремнивания полученного раствора в него вначале вводят расчетное количество соды:

H2SiF6 + Na2CO3 → Na2SiF6 + CO2 + H2O (15.и)

Трудно растворимый Na2SiF6 отделяют, а оставшийся раствор плавиковой кислоты нейтрализуют избытком соды и гидроксидом алюминия с получением криолита:

12HF + 3Na2CO3 + 2Al(OH)3 → 2(3NaF·AlF3) + 3CO2 + 9H2O (15.к)

Таким же путем могут быть раздельно получены NaF и AlF3, если обескремненный раствор плавиковой кислоты нейтрализовать рассчитанным количеством Na2CO3 или Al(OH)3.

Похожие статьи

© 2024 cryptodvizh.ru. Сryptodvizh - Бизнес новости.